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Abstract

Inthis paper we consider the problem of best approximatiép{fN), 1 < p <oco.Ifh ), 1< p <o
denotes the beé},-approximation of the elemente £1(N) from afinite-dimensional affine subspace
Kof£1(N), h ¢ K, thenlim,_,ooh ) =hi,, whereh, is a best uniform approximation offromK,
the so-called strict uniform approximation. Our aim is to give a complete description of the rate of
convergence ofh, — h, || asp — oo by proving that there are constarts, L, >0 and 0<a <1
such that

Lia? <plhp — < Lza”,

for p large enough.
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1. Introduction

For 1<p < oo, we consider the usudl,(N) linear space of the sequences=

{x()}jen € RY such thaty" [x(j)I” < oo, endowed with theg-norm
JjeN

ey = (X o).

JjeN
and the linear spadg (N) of the bounded sequencesﬂw, with the uniform norm

Ixll = llxlloo = sup{lx(j)1}.
jeN
Note that, for allp > 1, £2(N) C £,(N) C £ (N). Moreover, ifx e £1(N) then
lx]l = max;en |x(j)| and

lxll < llxllp < llx]la. 1)

Let K # ¢ be asubset of; (N). For ke £1(N) \ K and 1< p<oco we say thak, € K is
a best’ ,-approximation oh from K if

Ilhy —hll,<|f —hl, forallfeK.

If p = oo we will say thath, is a best uniform approximation &f from K. If K is a
finite-dimensional linear subspacef@iN), then the existence af, is guaranteed. More-
over, there exists a unique bést-approximation if 1< p < oc. In general, the unicity

of the best uniform approximation is not guaranteed. However, a unique “strict uniform
approximation”,h% , can be definefb]. The strict uniform approximation satisfies the next
property. LetH denote the set of the best uniform approximatior éfom K. For every

g € H we consider the sequencég) whose coordinates are given ly(j) — k()| ar-
ranged in decreasing order. Thigfy is the only element itd which hast(k},) minimal in

the lexicographic ordering. This definition of strict uniform approximation extends the one
given by Rice [9] wherK is a linear subspace &f".

There are quite a few attempts to generalize Rice’s definition of strict best approximation
whenK is a finite linear subspace 6f[a, b] or Co(T), the Banach space of all real-valued
continuous function$ on T which vanish at infinity, endowed with the supremum norm,
whereT is a locally convex compact Hausdorff, (see e.g., [4,5,11,13]). The existence of the
strict uniform approximation is related to the problem of constructing a continuous selec-
tion for the metric projection itCo(T). In [5] it is proved that the definition of the strict
uniform approximation as the limit of the besf,-approximation ap — oo (if it exists)
provides a natural continuous selectiorCisn 7). The discovery of the connection between
the convergence of the Polya algorithm and the existence of continuous selection is due to
Sommer [11,12].

WhenK is an affine subspace &', the convergence df), to 15, was proved in [1]. In
this context, the first result about the rate of convergendg: pf— h% || appears in [2]. In
this paper itis showed that||i, — k% || is bounded. Subsequently, in [7] the authors estab-
lished necessary and sufficient conditionskoto get thatp ||, — k% || — 0 asp — oo
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and in[8] it is proved that there are constarts, L, > 0 and 0<a <1, depending oI,
such that

Llapgpllhp _h* | <Lza”, (2

for all p large enough.

Throughout this papdf will be a finite-dimensional affine subspacelgtN). We will
assume thai = 0 and O¢ K. This involves no loss of generality since all relevant proper-
ties are translation invariant. In this context, it is also kndi88], that lim, . o i, = h%,.

In [3] the authors extend the result in [2] by proving that there eMst- 0 andpg > 1
such that

pllh, —h5 |l <M, forall p>po.

Our aim is to give a complete description of the rate of convergencnézpf— hi |l by
generalizing the result (2) to our context of approximation in the space).

2. Notation and preliminary results

For J € N we denoteJ¢ = N\ J. Moreover forv € £, (N) we define|v|; =
sup;¢; [v(j)|. Notice that|v[ln = [lv]l. The italic lettersh, u, v, w andz will be used to
denote elements df, (N).

Let K denote a finite-dimensional affine subspacé@lN), 0 ¢ K, andh}, (h,, 1 <
p < oo) be the strict uniform approximation (the bégtapproximation) of 0 fronK. Thus,
we can writeK = h%, + V, whereV is a finite-dimensional linear subspacelgtN) of
dimensionn > 0 (dlm(V) = m). We will assume thaffh’ || = 1 (this involves no loss of
generality). Thus, from (1) and the definition/f, we obtain

IRpll <IApllp <IAS N p < NhZ 1,

and also|h, — [ <|Ihpll + A5 I <2[h5 11
SetJop:={j € N h%. (j) = 0} and denote

Vo={veV:v(y) =0, forall j € N\ Jo}. 3)

By means of aninductive procedure we defige= 0, and fom € N suchthalN 7 U/, ];,

= ||h%, Ing-ay, and Ju=1{jeN: \hE, ()] = dy).
IfN=U_ Oljl forsomen € N, thenwe obtain afinite strictly decreasing seque{dp}é‘l
and a finite family of finite disjoint setg/;};_;". In this case we will put/, = 0. In the

opposite case, we obtain a strictly decreasmg sequieh¢e-n and a denumerable family
of finite disjoint setqJ,, },en such thatd, — 0 andu®, J; = N.
Forv ¢ Vp, define

r(v) =min{n € N : v(j) # 0, for somej € J,}. 4)
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If b, # h%,, define

hPi — hgo

. 5
17 p; — hll ©)

up =

Notice that; € V. Suppose that,, # h%, forinfinitely manyp;, with p; — ocoasi — oo.
Since|lu; || = 1 and dim(}) < oo, we can assume, taking a subsequence if necessary, that

im u; =ueV (6)

i—00
with |lu|| = 1. In that follows, this vectou will play an important role.
The following is a well known result (see for instar{d@]).

Theorem 1(Characterization of the begt,-approximation).A pointiz, € £,(N), 1 <
p < o0, is the best ,-approximation oD from K if and only if

> () [hp(D|P sgrth, () =0, forallve V. @)
JjeN

Lemma l. For p > 1,letz, € €1(N) andz € £1(N) be such that|z, — z|| — 0 as
p — oo. If z # 0, then for p sufficiently large,

ZZ(-])ZP(J)|ZP(J)IP_2 > 0. (8)

JjeN

Proof. We can assume thit| = 1. Writez, = z4+w),, withw,, € £2(N) and|w, || — 0
asp — oo. LetS ={j € N:|z(j)| = 1}. Puty = |z]|sc < 1 and choosé > 0 such that
y+0<1.

Fore = min{6,1 — vy — 9J, (y + 9)/l1zll1}, there existy’ > 1 such that forp > p/,

lwpyll < & and sgriz,(j)) = sgnz(j)), forall j € S.
If j € Sandp > p/, then

lzp (DI = 1z() + wp(DIZ1z(D] = [wp(DIZL = lwpll > 1 —e=7y + 0.
On the other hand, if € ¢ andp > p/, then
lzp (DI = 12() + wp(DI<Iz(D] + [wp(DI<y + llwpll <7 +e<y + 0.
So, taking into account that j)z, (j) > z(j)w,(j), we have for p > p,
> 2z D2 =Y lpWD zp D] 2+ D 2(zp() |2p (D] 2

JjeN jeSs jese
>3 Dl D72+ Y 2w (D 2o (D]
jes jese
> 7+ 02+ Ocards) — lw, | Y 120))

jese

> 0+ (0 + —elzl) >0 O
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Remark 1. We stand out the fact that if the vectoiis defined by (6), then ¢ Vo (see
(3)). In other case, applying (7) with= u andp = p;, we have

0= ulilhp, (NP ~sgrthy, () = Y uli)lhy, ()17 Lsgnhy, (7).

jeN jeJdo

Dividing the above equation byh,, — i |71, we obtain (recall thak?,(j) = O for
J € Jo)

> u(iyui (Dlui ()HIP =2 = 0.

Jj€do

From Lemmal we get a contradiction farlarge enough.

Lemma 2. Let the linear spacé and the family{/,} be given as above. There exist an
integerr >0, a strictly increasing sequence of integéssk) };, _,, witha(0) = 0,and linear
subspaced; (0<k<r) of V such thaty = @ _,Vk and if 1<k <r andv € Vi \ {0},

thenv(j) = Oforall j U"(k) ! Jrandv(j) # O0for somej € Jy).

Proof. If dim(Vo) = m (see (3)), we tak&y = V andr = 0. In other case, put(0) = 0
and suppose that we have constructed linear spgcesd the corresponding sequence
{o(k)} for k = 0,1, ...,s, with the property described above Wf = @&;_,Vk, then by
takingr = s we conclude the proof. Otherwise, we write= (EB,LO Vl) @ W, where

W, =V (B V)" Set
U1 ={veW,:v(j)=0, foralljeul™) )

and puta(s + 1) := min{n € N : v(j) # 0 for somev € U1 and somej € J,}. Note
thato(s + 1) > a(s). Now, we take ¥, 1 as the linear space generated by a farfsilin
U1 such that3|y, ., is a basis offs11]y,, 4, - Finally, observe that this involves a finite
inductive procedure. [J

Lemma 3. If v ¢ Vo, then there argj, j’ € J.(y) (see(4)) such thatw(j)i%, (j) > 0and
v(jHh5,(j") < 0.

Proof. Suppose the contrary. We can assume fhdt = 1 andv(j)h%,(j) <0 for all
J € Jrw (if this is not the case, we take the vecter in place ofv).

Fix a positiveA such thatl < d.q) — drw)+1<dr@) and consider the vectar =
W% + v e K. Ifr(v) > Landj € Ut g, thenu(j) = 0 and s0i(j) = h,(j). On
the other hand, foy € J.«,), we have

()] = (D] = (DI RS G-
Notice that the last inequality is strict for somes J,(,. Finally, if j € N\ U[(”) Ji, then

()< RS (D] + Av()] dry1 + 4 < dr).
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So, the vectoh is a best uniform approximation of 0 frolathat contradicts the definition
ofnl,. O

3. Rate of convergence

The next Theorem was proved[iB]. However, we present here a simpler proof whose
greater interest is that we do not use the fact that> 1} to conclude that the sequence
plih,—h% |lis bounded. The convergencenftoh’ (asp — oo) follows as animmediate
consequence of our result.

Theorem 2. Let K be a finite-dimensional affine subspacéaf\), 0 ¢ K. Leth,, 1 <

p < oo, denote the best,-approximation of0 from K and letk}  be the strict uni-
form approximation oD from K. Then there exist positive constants M and C such that,
forp > C,

plihy — bl <M.

Proof. It is sufficient to prove that liminp; (|, — h’ || < oo for every increasing se-
quencep; € (1,00) such thath,, # h%,, pi — oo, andu; — u (see (5)) as — oo.
From Remark 1 we know that ¢ ), thus the integer(«) is well defined (see (4)). From
Lemma 3 there existgp € J-«,) such thawu(jo)ik, (jo) > 0. Since

Ihp: = hll

pilly, — W5l = pilhp, Go) — hE, (o)l —— _—
e = Booll = Piltp MO o) = i (o)l

and
lim Ay — 5|l _ 1
i—~oo [hp, (jo) — i Go)l  luCio)l’

it is sufficient to prove that the sequenggh , (jo) — 15, (jo)| is bounded.
We need some notation. For eacket I'; be the finite set of indiceg € N such that
|7 p; ()] > dry andu(j) # 0. Moreover, define

7 = dr@ — dra+1)/ QIS ).

SinceJ, ) is afinite set and; — u, there existdN such that, for > N, [lu; —u| <y and
sgn(u; (j)) = sgnu(j)), forall j € J.«,) such that(;j) # 0.

If i > N, then sgith’,(jo) = sgnu(jo)) = sgnu;(jo)) = Sgn(hp, (jo) —h3,(jo)).
Therefore|h, (jo)| > |hh (jo)l = drw) andI; # @. Moreover, ifj € T; N J.(,, then
sgn(u(j)) = sgn(u; (j)) = sgn(hp, (j) — h5,(j)) = sgnhp, (j))-

Onthe otherhandif € Fiﬂjf(u),then sgitu; (7)) = sgnu(j)). Indeed, ifj € l“ime(M),
then |h;o(J)| gdr(u)+1 and then|hp,' (]) - hgo(]” > dr(u) - dr(u)+l- If Sgn(”z(])) 7&
sgnu(j)), then

|hp, (J) — hi ()] _ drw —drw1 _

i —ull Z>ui(j) —u(HI=ui ()] =
' ' l hp; — M3l 2||h% e

and we arrive to a contradiction.
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Now fori > N (we use below (7) with = u andp = p;)
|l p; (o) — h&(]'o)l)
r(u)

lu(jo)l <1+ (pi —1) y

<hugio)(1+ IO =IO oy | o)
( ) r(u)
Pt(]) Pt
<Y ()l =Y u(j) Sgr(hp,(J))
jeli jeli
pi—
. Ak gty ) <l
jere dr )

Finally, fori > N,

pilhp, (jo) — h3, (o)l
hp, (jo) — hi (j
<lujo)lhp; Go) — his (o)l + draylu(jo)| <1+ (pi — 1)| = (]021 ( )OO(]O)|>

SluGollnp, — bl + dra lulla <2lu(o)llhg s + drapllulls. O

Corollary 1. IfK, i, andh}, are given as in Theorei(2), then

lim h, =h%.

p—00

Theorem 3. IfK, i, andh}_ are given asin Theore@thenp ||k, —h} || — Oasp — oo
if and only if, for all 1<k <r and everyw € V,

> v(j)sgnhi,(j) =0, ©)
J€Ja(k)
where the spaceg; (1<k<r) are as in Lemma.
Proof. (=) Letv be avectorinVk. SinceJy, is finite andh , — h’ asp — oo, there ex-

istsNsuchthat,fop > N, ||k, —h}k | < %(d,,(k)—da(k)ﬂ) andsgiih,(j)) = sgnthi,(j))
forall j € Jou). Thus, ifj € Joq), then

p—1 Nk o\ 1
—im <1+ hp(j) ]’.loo(])) _1
p—>o0 h%.(J)

because limp (h,(j) — h} (j)) = 0. On the other hand, ®; = Jo U (U~ J;) and
p—>00
p > N, then

hp(j)
da k)

lim

p—>0o0

1
I17pllQ <IAS o + 1Ry — hEllo, < E(da(k) +do(o+1) < doto-
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Applying (7) to the vectop and dividing byd? (k) , we have
D
> v o | ST+ va sgr(hpm)— . (10)
g

JE€Jo(k) je

So, lettingp — oo we obtain (9).

(<) Suppose thap ||, — k% || does not converge to 0 @as— oo. This is just equivalent
to the existence of a sequenge— oo such thatp; ||, — k%l — p > 0. Consider the
vectorsy; defined as in (5) and letbe its corresponding vector limit (6). Recall thag V.
We obtain an equation similar to (10) by applying (7), eog u andp = p;, and dividing

1
by dzu) !

ho (i) |PiTL
> u() B D sgrens, ()
. dr(u)
]E-Ir(u)
+ Z u(j)| "'() sgr(hp,(m— (12)

Jrc (u)

In this case, foj € J,(,),
hp, () — h5. ()

Wy — R = pu(j).

lim pi(hp, (j) = h5(j)) = lim pillhy —hZ|
11— 00 11— 00

So, taking limits in (11) and keeping in mind thatf* > o for all  # 0 andf > 0, we
obtain,

0= Y u(j)et D" Dsgnnt (/)

jEJr(u)
= > u(j)sgnihi,(j)et/hw SO~ Ny () sgnihl, (7).
J€Jrw) JE€Irw)

Then (9) does not hold for a vectore V \ Vo. O

Theorem 4. If K, h, andh} are given as in Theore@, then there existpg > 1 such that
h, =h% forall p > poifandonlyif,forallv e Vandalln e N,

D v(j)sgnii(j)) = 0. (12)

J€Jn
Proof. By Theoreml we have j, = h}_ forall p > po if and only if

D vk DIPE sgnhs, () =
JjeN
forallv € V. Sinceh} (j) = 0 for j € Jo, we can write the above equation as

> dl Tty w(j)sgnihi, () =0, (13)

neN jedn
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If (12) holds then (13) follows trivially. On the other hand, if (13) is true, then dividing the
last equation byll.”_l, fori = 1,2, ..., respectively, and taking limits as— oo we obtain
(12) by means of an inductive proceduré.]

Lemma 4. There exist9/ > 0 such thatfor p large enough,

lhp — ISl < Nk p — REI < MRy, — i 5, (14)

whereJ = UIZ:l Jo(k)-

Proof. Note that the first inequality in (14) is obvious. For the second, suppose, to the
contrary, that there exists a sequepge—> oo, with &, # h}_, such that

Ihp — 3l 5

— 0 asi — oo. (15)
172 = RS

Consider for this sequence the vectarsas in (5) and its corresponding vector linoit
From (15) we conclude that(j) = O for all j € J. Henceu € Vp. A contradiction. [

The inequalities in (14) show that the rate of convergendé pf- 17 || is just determined
by the set of indiced = U} _, Jo(x).-

4. The main result

Let Wo = @®}_1Vk, mo = dim(Wp), B = {v1, ..., vn,) be a basis olVp andl =
{1, ..., mo}, whereV are the linear subspaces ¥fgiven in Lemma 2. We assume that
if i €1, thenv; € Vy for somek € {1,...,r}. Let{[};_, be the partition of given be
Iy = {i €l :v; €V} and putmy = card ly).

Given any vectop € V there are two unique vectofs, = (4,(i))ic € R' andw, € Vo
such that

V= Zlv(i)vi + wy.
i€l

Sincew,(j) =0forall j € J (see (NIAyl := maxe [4,(i)] is @a norm onV| ;. So, by
the equivalence of norms | ;, we have
MillAlI<IIvllj < M2l Ayl (16)

for some constantaf,, M, > O.
For 1<k <r andn € N, we define

E(n k) = max| = v(j)sgriht, (j))| ands(k) = min [n eN:Zn k) £ 0},

1€l e,
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wherey (k) is assumed to be 0X(n, k) = 0, foralln € N. Finally, letabe the real number
given by

= max d, doi)- 17
a= max k) /o) (17)

Sincev;(j) =0forall j € Uf:(kl)_ljl fori € I, we havej(k) > o(k) and so Xa < 1.

In what follows, ifA is a matrix, we will denote byA” the transpose matrix @ and by
[|A]| the row-sum norm oA.

Theorem 5. Let K be a finite-dimensional affine subspacéaf\), 0 ¢ K. Leth,, 1 <
p < oo, denote the best,-approximation of0 from K and leti}_ be the strict uniform
approximation oD from K. Then there are positive constaiitg L, and po > 1 such that,

for p > po,
Lia? <p|hp — hi, | < Laa?, (18)

where a is the real number defined(ir).

Proof. If h, = h} forall plarge enough then, by Theorem¥x, k) = 0, for allnand all
k. Thusa = 0 and (18) holds. On the other handyik) = a(k) for somek € {1,2,...,r},
thena = 1 and (18) follows from Theorems 2 and 3. Therefore, we asspy#e> a(k),
all k. This implies that O< a < 1 and (see Theorem 3)||h, — h} || = 0 asp — oo.
Setn = max{n(k) : dyx/dey = a},n = max{n, r} andd = U}, J.
Let A, = (4,(i))iel be the unique vector iR' such that

hp =R+ dp()vi +wp, (19)
i€l
with w, € V. Taking into account (14) and (16), we deduce that
M| ALl <Ilhp — Ri I < M2||Apll, (20)

for some constant&, M, > 0. Hence the rate of convergence|af, — A% || will be also
determined by the norm of the vectr,.
Sincel is a finite set and, — h,, there existgo > 1 such that fop > po,

2|lhp = hi )l < dn — dny1 (21)

and sgii, (j)) = sgn(h} (j)) forall j € J.

Thus forp > po, taking into account thab,(j) = 0 for all j € J and applying the
Taylor’s formula of order 1 to the function(z) = (1 + z)?~* aboutz = 0, we obtain for
j e Jywith 1</<n,

hy(j) Pt (hp(j)>“ 2p ()i (j)\ 1
7 = =27 = (1 pr/nz
di ) <+Z, o)

1

h3. ()

=1+

(P =1 pi)vi(j) + Rp(j), (22)

i€l
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with R, (j) = o(plIA,l) asp — oo, because ||h, — h’ || — 0 and by (20) that is just
equivalent top |A, || — O.
Puttingv = v;,i € |, in (7) we obtain, fopp large,

D o ui(DIhp(DIPsgni () + Y v, (DIP~ sgn(h,(j)) = 0
jed jede
Viel. (23)

This nonlinear system can be written as
MH] +K] =0, (24)
whereM is the matrixM = (v;i(j)) ;. jye1 <3 aNdH,, K, denote the vectors iR’ andR',
respectively, whose components are given by
Hp(j) = Ihp(DIPHsgnhi (), j €
Kp@) =Y vi(Dlhpy(DIP~tsan(hy(j), i€l

jede

Taking into account (22) we can express the veﬁﬁrlike
-1 -2 -1
HI =AY + (p— DA "M AT + AT R

where Y and R, are the vectors iR’ given by Y := (sgn(i¥, (])) oy and R, :=
(Rp(j) sgr(h’;o(j)))jej, andA; := (6;j), j)eaxa is the diagonal matrix such thay;, = d;
if j € J;, 1<I<n. Substituting in (24) we obtain the system

M (AT 4 (p = DAY ZMTAL + AP 2R + KT =0, (25)

Let Ay = (3;;)¢i.j)el =1 be the diagonal matrix such that = de if i € I, 1<k<r.
-2
Multiplying (25) by A, 7+2 := (Afl)p we have
(p — DA P MAL M7 AT
—ATPPPMALTIYT - ATPTPMAL PR - AR (26)

Observe that the multiplication byl %is equivalent to divide by”k each of equations
in (23) obtained fot € I;. This operation is justified becausg j) = 0 for all j € J; if
j < o(k).

Next we study each of the terms in the former system. Let us parfifionto blocks
Mg, k=1,...,r,1 =1,...,n,whereM;; = (v;(j))i,j)er xJ- AN €asy computation
shows that

T

Ap) = A PPPMAYPMT = (A ()] o

whereAy (p) is the matrix of ordermy x my given by

n dl p—2 ’
Ars(p) =) ( ) MM

=1 \doo
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SinceMy ; is a null matrix ifl < a(k), andd; < ds« if I > a(k), then
. H T
Aps = plinoo Aks(P) = Mi oty My 51

Moreover, Sincé/; () is also a null matrix it > &, we conclude thad := lim ,_, o, A(p)
is a lower triangular matrix by blocks and so

det(A)= [ det( Mo M{ y)) #O.
k=1

In particular we have proved that there exipts> po such that the matrixd (p) is non
singular forp > p1.
Analogously, denoting by, = —A,_”J”ZMAﬁ’_lYT it is easy to check that

Bp(i) = —do Z (

I=0(k)

p—1
) Do u()Sghk () forie I, 1<k<r.

J(k) JE€J

The definition ofa implies that ifd;/dsx) > a thenZ s Vi (j)sgnh%,(j)) = 0O for all
i € Ir. On the other hand, the selectionrofmplies that there i%g € {1,2,...,r} and
lo = n(ko) suchthako+1<lo< N, dy/ds ke = a andZ(lo, ko) = maXer,, | Zjejlo v;i (j)

sgn(hi,(j))| # 0. Therefore,

0<b:= lim ||B,l/a’ < 0.
p—>00

Similarly, writing C,, = —Al_”+2MA§_2R; we obtain, fori € I, 1<k<r,

n

di \"71
Cpi) = —douy Y ( ’ ) > vi()Rp () SINRZ ()

I=a(k) do (k) el

and then lim el =0.

p—oo P ||A I
Finally, denotingD,, = —A,_”JFZK;, we have

p—1

-
D,;(i)=Zvi<j>‘M sgnhy () forie . 1<k<r.
ds (k)

jede

Since, forp > p1 (see (21)),
1
Ipllae <NhSNae + 1hp — higllae <dnia + 1Ay — Al < E(dn +dny1) < dn,

and, from the selection af, dn/dsx) <a, for all k € {1,2,...,r}, we conclude that
lim [[Dpll/a? = 0.
p—>00

With the notation introduced in the previous paragraphs we can write the system (26) as

(p —DAPA] = By +Cp + D),
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and so
(p—DIAI = IIA(p)*1 (Bp +Cp+ Dp) < IIA(p)flII (”Bp” +ICpll + ”Dp”) .
Therefore,

AP G,
(P = DIAII
Dividing the above inequality bya” and taking limits asp — oo we have
limsup,_. o PIIA,lI/a” <A~ b.

In similar way,

(P = DIA,I <l - ) <IAP) Bl + 1A HHID, .

1Cyl
(p = DIAMDI A

and therefore liminf_. p IIA,ll/a” >b/||All . From the above inequalities there exists
p2 > p1such that, forp > po,

b A
b PIA 4y, (27)
Al S ar

Finally, taking into account (20) we conclude the proofl]

IBpll<(p = DIAMDI A <1+ ) + 1Dyl
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