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Abstract

In this paperweconsider theproblemof best approximation in�p(N), 1<p�∞. Ifhp, 1<p<∞
denotes thebest�p-approximationof theelementh ∈ �1(N) fromafinite-dimensional affinesubspace
K of �1(N), h /∈K, then limp→∞hp = h∗∞, whereh∗∞ is a best uniform approximation ofh fromK,
the so-called strict uniform approximation. Our aim is to give a complete description of the rate of
convergence of‖hp − h∗∞‖ asp → ∞ by proving that there are constantsL1, L2> 0 and 0�a�1
such that

L1a
p�p ‖hp − h∗∞‖�L2 a

p,

for p large enough.
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1. Introduction

For 1�p < ∞, we consider the usual�p(N) linear space of the sequencesx =
{x(j)}j∈N ∈ RN such that

∑
j∈N

|x(j)|p < ∞, endowed with thep-norm

‖x‖p =
( ∑
j∈N

|x(j)|p
)1/p

,

and the linear space�∞(N) of the bounded sequences inRN, with the uniform norm

‖x‖ = ‖x‖∞ = sup
j∈N

{|x(j)|}.

Note that, for allp > 1, �1(N) ⊂ �p(N) ⊂ �∞(N). Moreover, if x ∈ �1(N) then
‖x‖ = maxj∈N |x(j)| and

‖x‖�‖x‖p�‖x‖1. (1)

LetK �= ∅ be a subset of�1(N). For h∈ �1(N) \K and 1�p�∞ we say thathp ∈ K is
a best�p-approximation ofh fromK if

‖hp − h‖p�‖f − h‖p for all f ∈ K.

If p = ∞ we will say thath∞ is a best uniform approximation ofh from K. If K is a
finite-dimensional linear subspace of�1(N), then the existence ofhp is guaranteed. More-
over, there exists a unique best�p-approximation if 1< p < ∞. In general, the unicity
of the best uniform approximation is not guaranteed. However, a unique “strict uniform
approximation’’,h∗∞, can be defined[6]. The strict uniform approximation satisfies the next
property. LetH denote the set of the best uniform approximation ofh from K. For every
g ∈ H we consider the sequence�(g) whose coordinates are given by|g(j) − h(j)| ar-
ranged in decreasing order. Thenh∗∞ is the only element inH which has�(h∗∞)minimal in
the lexicographic ordering. This definition of strict uniform approximation extends the one
given by Rice [9] whenK is a linear subspace ofRn.
There are quite a few attempts to generalize Rice’s definition of strict best approximation

whenK is a finite linear subspace ofC[a, b] orC0(T ), the Banach space of all real-valued
continuous functionsf on T which vanish at infinity, endowed with the supremum norm,
whereT is a locally convex compact Hausdorff, (see e.g., [4,5,11,13]). The existence of the
strict uniform approximation is related to the problem of constructing a continuous selec-
tion for the metric projection inC0(T ). In [5] it is proved that the definition of the strict
uniform approximation as the limit of the bestLp-approximation asp → ∞ (if it exists)
provides a natural continuous selection inC0(T ). The discovery of the connection between
the convergence of the Polya algorithm and the existence of continuous selection is due to
Sommer [11,12].
WhenK is an affine subspace ofRn, the convergence ofhp to h∗∞ was proved in [1]. In

this context, the first result about the rate of convergence of‖hp − h∗∞‖ appears in [2]. In
this paper it is showed thatp ‖hp −h∗∞‖ is bounded. Subsequently, in [7] the authors estab-
lished necessary and sufficient conditions onK to get thatp ‖hp − h∗∞‖ → 0 asp → ∞
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and in[8] it is proved that there are constantsL1, L2 > 0 and 0�a�1, depending onK,
such that

L1a
p�p ‖hp − h∗∞‖�L2a

p, (2)

for all p large enough.
Throughout this paperK will be a finite-dimensional affine subspace of�1(N). We will

assume thath = 0 and 0/∈ K. This involves no loss of generality since all relevant proper-
ties are translation invariant. In this context, it is also known,[3,6], that limp→∞ hp = h∗∞.
In [3] the authors extend the result in [2] by proving that there existM > 0 andp0 > 1
such that

p ‖hp − h∗∞‖ < M, for all p�p0.

Our aim is to give a complete description of the rate of convergence of‖hp − h∗∞‖ by
generalizing the result (2) to our context of approximation in the space�1(N).

2. Notation and preliminary results

For J ⊆ N we denoteJ c = N \ J . Moreover forv ∈ �∞(N) we define‖v‖J =
supj∈J |v(j)|. Notice that‖v‖N = ‖v‖. The italic lettersh, u, v, w andzwill be used to
denote elements of�p(N).

Let K denote a finite-dimensional affine subspace of�1(N), 0 /∈ K, andh∗∞ (hp, 1 <

p < ∞) be the strict uniform approximation (the best�p-approximation) of 0 fromK. Thus,
we can writeK = h∗∞ + V, whereV is a finite-dimensional linear subspace of�1(N) of
dimensionm > 0 (dim(V) = m). We will assume that‖h∗∞‖ = 1 (this involves no loss of
generality). Thus, from (1) and the definition ofhp, we obtain

‖hp‖�‖hp‖p�‖h∗∞‖p�‖h∗∞‖1,
and also‖hp − h∗∞‖�‖hp‖ + ‖h∗∞‖�2‖h∗∞‖1.
SetJ0 := {j ∈ N : h∗∞(j) = 0} and denote

V0 = {v ∈ V : v(j) = 0, for all j ∈ N \ J0}. (3)

Bymeansof an inductiveprocedurewedefined0 = 0, and forn ∈ N such thatN �= ∪n−1
l=0 Jl ,

dn = ‖h∗∞‖N\∪n−1
l=0 Jl

and Jn = {j ∈ N : |h∗∞(j)| = dn}.

If N = ∪n−1
l=0 Jl for somen ∈ N, thenwe obtain a finite strictly decreasing sequence{dl}n−1

l=1
and a finite family of finite disjoint sets{Jl}n−1

l=1 . In this case we will putdn = 0. In the
opposite case, we obtain a strictly decreasing sequence{dn}n∈N and a denumerable family
of finite disjoint sets{Jn}n∈N such thatdn → 0 and∪∞

l=0 Jl = N.
Forv /∈ V0, define

r(v) = min{n ∈ N : v(j) �= 0, for somej ∈ Jn}. (4)
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If hpi �= h∗∞, define

ui = hpi − h∗∞
‖hpi − h∗∞‖ . (5)

Notice thatui ∈ V. Suppose thathpi �= h∗∞ for infinitelymanypi , withpi → ∞asi → ∞.
Since‖ui‖ = 1 and dim(V) < ∞, we can assume, taking a subsequence if necessary, that

lim
i→∞ ui = u ∈ V (6)

with ‖u‖ = 1. In that follows, this vectoruwill play an important role.
The following is a well known result (see for instance[10]).

Theorem 1(Characterization of the best�p-approximation).A point hp ∈ �p(N), 1 <

p < ∞, is the best�p-approximation of0 from K if and only if
∑
j∈N

v(j)
∣∣hp(j)∣∣p−1 sgn(hp(j)) = 0, for all v ∈ V. (7)

Lemma 1. For p > 1, let zp ∈ �1(N) and z ∈ �1(N) be such that‖zp − z‖ → 0 as
p → ∞. If z �= 0, then for p sufficiently large,∑

j∈N

z(j)zp(j)|zp(j)|p−2 > 0. (8)

Proof. We can assume that‖z‖ = 1.Writezp = z+wp, withwp ∈ �1(N) and‖wp‖ → 0
asp → ∞. Let S = {j ∈ N : |z(j)| = 1}. Put� = ‖z‖Sc < 1 and choose� > 0 such that
� + � < 1.

For ε = min{�, 1 − � − �, (� + �)/‖z‖1}, there existsp′ > 1 such that forp > p′,
‖wp‖ < ε and sgn(zp(j)) = sgn(z(j)), for all j ∈ S.

If j ∈ S andp > p′, then

|zp(j)| = |z(j) + wp(j)|� |z(j)| − |wp(j)|�1− ‖wp‖ > 1− ε�� + �.

On the other hand, ifj ∈ Sc andp > p′, then

|zp(j)| = |z(j) + wp(j)|� |z(j)| + |wp(j)|�� + ‖wp‖ < � + ε�� + �.

So, taking into account thatz(j)zp(j)�z(j)wp(j), we have for p > p′,∑
j∈N

z(j)zp(j)
∣∣zp(j)∣∣p−2 =

∑
j∈S

|zp(j)|
∣∣zp(j)∣∣p−2 +

∑
j∈Sc

z(j)zp(j)
∣∣zp(j)∣∣p−2

�
∑
j∈S

|zp(j)|
∣∣zp(j)∣∣p−2 +

∑
j∈Sc

z(j)wp(j)
∣∣zp(j)∣∣p−2

> (� + �)p−2
(
(� + �)card(S) − ‖wp‖

∑
j∈Sc

|z(j)|
)

� (� + �)p−2
(
(� + �) − ε‖z‖1

)
�0. �
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Remark 1. We stand out the fact that if the vectoru is defined by (6), thenu /∈ V0 (see
(3)). In other case, applying (7) withv = u andp = pi , we have

0 =
∑
j∈N

u(j)|hpi (j)|pi−1sgn(hpi (j)) =
∑
j∈J0

u(j)|hpi (j)|pi−1sgn(hpi (j)).

Dividing the above equation by‖hpi − h∗∞‖pi−1, we obtain (recall thath∗∞(j) = 0 for
j ∈ J0)∑

j∈J0
u(j)ui(j)|ui(j)|pi−2 = 0.

From Lemma1 we get a contradiction fori large enough.

Lemma 2. Let the linear spaceV and the family{Jn} be given as above. There exist an
integerr�0,a strictly increasing sequence of integers{�(k)}rk=0,with�(0) = 0,and linear
subspacesVk (0�k�r) of V such that,V = ⊕r

k=0Vk and if 1�k�r andv ∈ Vk \ {0},
thenv(j) = 0 for all j ∈ ∪�(k)−1

l=1 Jl andv(j) �= 0 for somej ∈ J�(k).

Proof. If dim(V0) = m (see (3)), we takeV0 = V andr = 0. In other case, put�(0) = 0
and suppose that we have constructed linear spacesVk and the corresponding sequence
{�(k)} for k = 0, 1, . . . , s, with the property described above. IfV = ⊕s

k=0Vk, then by
taking r = s we conclude the proof. Otherwise, we writeV = ( ⊕s

l=0 Vl

) ⊕ Ws , where

Ws = V ∩ ( ⊕s
l=0 Vl

)⊥. Set

Us+1 = {v ∈ Ws : v(j) = 0, for all j ∈ ∪�(s)
l=1 Jl}

and put�(s + 1) := min{n ∈ N : v(j) �= 0 for somev ∈ Us+1 and somej ∈ Jn}. Note
that�(s + 1) > �(s). Now, we take Vs+1 as the linear space generated by a familyB in
Us+1 such thatB|J�(s+1) is a basis ofUs+1|J�(s+1). Finally, observe that this involves a finite
inductive procedure. �

Lemma 3. If v /∈ V0, then there arej, j ′ ∈ Jr(v) (see(4)) such thatv(j)h∗∞(j) > 0 and
v(j ′)h∗∞(j ′) < 0.

Proof. Suppose the contrary. We can assume that‖v‖ = 1 andv(j)h∗∞(j)�0 for all
j ∈ Jr(v) (if this is not the case, we take the vector−v in place ofv).
Fix a positive� such that� < dr(v) − dr(v)+1�dr(v) and consider the vector̃h =

h∗∞ + � v ∈ K. If r(v) > 1 andj ∈ ∪r(v)−1
l=1 Jl , thenv(j) = 0 and soh̃(j) = h∗∞(j). On

the other hand, forj ∈ Jr(v), we have

|h̃(j)| = |h∗∞(j)| − �|v(j)|� |h∗∞(j)|.
Notice that the last inequality is strict for somej ∈ Jr(v). Finally, if j ∈ N \ ∪r(v)

l=1 Jl , then

|h̃(j)|� |h∗∞(j)| + �|v(j)|�dr(v)+1 + � < dr(v).
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So, the vector̃h is a best uniform approximation of 0 fromK that contradicts the definition
of h∗∞. �

3. Rate of convergence

The next Theorem was proved in[3]. However, we present here a simpler proof whose
greater interest is that we do not use the fact thathp → h∗∞ to conclude that the sequence
p‖hp−h∗∞‖ is bounded.The convergenceofhp toh∗∞ (asp → ∞) followsasan immediate
consequence of our result.

Theorem 2. Let K be a finite-dimensional affine subspace of�1(N), 0 /∈ K. Let hp, 1 <
p < ∞, denote the best�p-approximation of0 from K and leth∗∞ be the strict uni-
form approximation of0 from K. Then there exist positive constants M and C such that,
for p > C,

p ‖hp − h∗∞‖�M.

Proof. It is sufficient to prove that lim infpi‖hpi − h∗∞‖ < ∞ for every increasing se-
quencepi ∈ (1,∞) such thathpi �= h∗∞, pi → ∞, andui → u (see (5)) asi → ∞.
From Remark 1 we know thatu /∈ V0, thus the integerr(u) is well defined (see (4)). From
Lemma 3 there existsj0 ∈ Jr(u) such thatu(j0)h∗∞(j0) > 0. Since

pi‖hpi − h∗∞‖ = pi |hpi (j0) − h∗∞(j0)| ‖hpi − h∗∞‖
|hpi (j0) − h∗∞(j0)| ,

and

lim
i→∞

‖hpi − h∗∞‖
|hpi (j0) − h∗∞(j0)| = 1

|u(j0)| ,

it is sufficient to prove that the sequencepi |hpi (j0) − h∗∞(j0)| is bounded.
We need some notation. For eachi let �i be the finite set of indicesj ∈ N such that

|hpi (j)| > dr(u) andu(j) �= 0. Moreover, define

� = (dr(u) − dr(u)+1)/(2‖h∗∞‖1).
SinceJr(u) is a finite set andui → u, there existsN such that, fori > N , ‖ui −u‖ < � and
sgn(ui(j)) = sgn(u(j)), for all j ∈ Jr(u) such thatu(j) �= 0.

If i > N , then sgn(h∗∞(j0)) = sgn(u(j0)) = sgn(ui(j0)) = sgn(hpi (j0) −h∗∞(j0)).
Therefore|hpi (j0)| > |h∗∞(j0)| = dr(u) and�i �= ∅. Moreover, ifj ∈ �i ∩ Jr(u), then
sgn(u(j)) = sgn(ui(j)) = sgn(hpi (j) − h∗∞(j)) = sgn(hpi (j)).
On theother hand ifj ∈ �i∩J cr(u), thensgn(ui(j)) = sgn(u(j)). Indeed, ifj ∈ �i∩J cr(u),

then |h∗∞(j)|�dr(u)+1 and then|hpi (j) − h∗∞(j)| > dr(u) − dr(u)+1. If sgn(ui(j)) �=
sgn(u(j)), then

‖ui − u‖� |ui(j) − u(j)|� |ui(j)| = |hpi (j) − h∗∞(j)|
‖hpi − h∗∞‖ >

dr(u) − dr(u)+1

2‖h∗∞‖1 = �

and we arrive to a contradiction.
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Now for i > N (we use below (7) withv = u andp = pi)

|u(j0)|
(
1+ (pi − 1)

|hpi (j0) − h∗∞(j0)|
dr(u)

)

� |u(j0)|
(
1+ hpi (j0) − h∗∞(j0)

h∗∞(j0)

)pi−1
� |u(j0)|

∣∣∣∣hpi (j0)dr(u)

∣∣∣∣
pi−1

�
∑
j∈�i

|u(j)|
∣∣∣∣hpi (j)dr(u)

∣∣∣∣
pi−1

=
∑
j∈�i

u(j)

∣∣∣∣hpi (j)dr(u)

∣∣∣∣
pi−1

sgn(hpi (j))

= −
∑
j∈�c

i

u(j)

∣∣∣∣hpi (j)dr(u)

∣∣∣∣
pi−1

sgn(hpi (j))�‖u‖1.

Finally, for i > N ,

pi |hpi (j0) − h∗∞(j0)|
� |u(j0)||hpi (j0) − h∗∞(j0)| + dr(u)|u(j0)|

(
1+ (pi − 1)

|hpi (j0) − h∗∞(j0)|
dr(u)

)

� |u(j0)|‖hpi − h∗∞‖ + dr(u)‖u‖1�2|u(j0)|‖h∗∞‖1 + dr(u)‖u‖1. �

Corollary 1. If K, hp andh∗∞ are given as in Theorem(2), then

lim
p→∞hp = h∗∞.

Theorem 3. If K, hp andh∗∞ are given as inTheorem2, thenp ‖hp−h∗∞‖ → 0asp → ∞
if and only if,for all 1�k�r and everyv ∈ Vk,

∑
j∈J�(k)

v(j) sgn(h∗∞(j)) = 0, (9)

where the spacesVk (1�k�r) are as in Lemma2.

Proof. (⇒) Letv be a vector inVk. SinceJ�(k) is finite andhp → h∗∞ asp → ∞, there ex-
istsNsuch that, forp > N ,‖hp−h∗∞‖ < 1

2(d�(k)−d�(k)+1)and sgn(hp(j)) = sgn(h∗∞(j))

for all j ∈ J�(k). Thus, ifj ∈ J�(k), then

lim
p→∞

∣∣∣∣hp(j)d�(k)

∣∣∣∣
p−1

= lim
p→∞

(
1+ hp(j) − h∗∞(j)

h∗∞(j)

)p−1

= 1,

because lim
p→∞p (hp(j) − h∗∞(j)) = 0. On the other hand, if�k = J0 ∪ (∪l>�(k)Jl) and

p > N , then

‖hp‖�k
�‖h∗∞‖�k

+ ‖hp − h∗∞‖�k
<

1

2

(
d�(k) + d�(k)+1

)
< d�(k).
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Applying (7) to the vectorv and dividing bydp−1
�(k) , we have

∑
j∈J�(k)

v(j)

∣∣∣∣hp(j)d�(k)

∣∣∣∣
p−1

sgn(h∗∞(j)) +
∑
j∈�k

v(j)

∣∣∣∣hp(j)d�(k)

∣∣∣∣
p−1

sgn(hp(j)) = 0. (10)

So, lettingp → ∞ we obtain (9).
(⇐) Suppose thatp ‖hp−h∗∞‖ does not converge to 0 asp → ∞. This is just equivalent

to the existence of a sequencepi → ∞ such thatpi‖hpi − h∗∞‖ → � > 0. Consider the
vectorsui defined as in (5) and letube its corresponding vector limit (6). Recall thatu /∈ V0.
We obtain an equation similar to (10) by applying (7), conv = u andp = pi , and dividing
by dp−1

r(u) ,∑
j∈Jr(u)

u(j)

∣∣∣∣hpi (j)dr(u)

∣∣∣∣
pi−1

sgn(h∗∞(j))

+
∑

j∈J c
r(u)

u(j)|
∣∣∣∣hpi (j)dr(u)

∣∣∣∣
pi−1

sgn(hpi (j)) = 0. (11)

In this case, forj ∈ Jr(u),

lim
i→∞pi(hpi (j) − h∗∞(j)) = lim

i→∞pi‖hpi − h∗∞‖ hpi (j) − h∗∞(j)

‖hpi − h∗∞‖ = � u(j).

So, taking limits in (11) and keeping in mind that� e�� > � for all � �= 0 and� > 0, we
obtain,

0=
∑

j∈Jr(u)
u(j)e� u(j)/h

∗∞(j)sgn(h∗∞(j))

=
∑

j∈Jr(u)
u(j) sgn(h∗∞(j))e(�/dr(u))u(j) sgn(h

∗∞(j)) >
∑

j∈Jr(u)
u(j) sgn(h∗∞(j)).

Then (9) does not hold for a vectorv ∈ V \ V0. �

Theorem 4. If K, hp andh∗∞ are given as in Theorem2, then there existsp0 > 1 such that
hp = h∗∞ for all p > p0 if and only if,for all v ∈ V and alln ∈ N,

∑
j∈Jn

v(j) sgn(h∗∞(j)) = 0. (12)

Proof. By Theorem1 we have hp = h∗∞ for all p > p0 if and only if
∑
j∈N

v(j)|h∗∞(j)|p−1 sgn(h∗∞(j)) = 0,

for all v ∈ V. Sinceh∗∞(j) = 0 for j ∈ J0, we can write the above equation as∑
n∈N

d
p−1
n

∑
j∈Jn

v(j)sgn(h∗∞(j)) = 0. (13)
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If (12) holds then (13) follows trivially. On the other hand, if (13) is true, then dividing the
last equation bydp−1

i , for i = 1,2, . . ., respectively, and taking limits asp → ∞we obtain
(12) by means of an inductive procedure.�

Lemma 4. There existsM > 0 such that,for p large enough,

‖hp − h∗∞‖
Ĵ
�‖hp − h∗∞‖�M‖hp − h∗∞‖

Ĵ
, (14)

whereĴ = ∪r
k=1 J�(k).

Proof. Note that the first inequality in (14) is obvious. For the second, suppose, to the
contrary, that there exists a sequencepi → ∞, with hpi �= h∗∞, such that

‖hpi − h∗∞‖
Ĵ

‖hpi − h∗∞‖ → 0 asi → ∞. (15)

Consider for this sequence the vectorsui as in (5) and its corresponding vector limitu.
From (15) we conclude thatu(j) = 0 for all j ∈ Ĵ . Henceu ∈ V0. A contradiction. �

The inequalities in (14) show that the rate of convergence of‖hp−h∗∞‖ is just determined
by the set of indiceŝJ = ∪r

k=1J�(k).

4. The main result

Let W0 = ⊕r
k=1Vk, m0 = dim(W0), B = {v1, . . . , vm0} be a basis ofW0 and I =

{1, . . . , m0}, whereVk are the linear subspaces ofV given in Lemma 2. We assume that
if i ∈ I , thenvi ∈ Vk for somek ∈ {1, . . . , r}. Let {Ik}rk=1 be the partition ofI given be
Ik = {i ∈ I : vi ∈ Vk} and putmk = card(Ik).
Given any vectorv ∈ V there are two unique vectors�v = (�v(i))i∈I ∈ RI andwv ∈ V0

such that

v =
∑
i∈I

�v(i)vi + wv.

Sincewv(j) = 0 for all j ∈ Ĵ (see (3)),‖�v‖ := maxi∈I |�v(i)| is a norm onV|
Ĵ
. So, by

the equivalence of norms inV|
Ĵ
, we have

M1‖�v‖�‖v‖
Ĵ
�M2‖�v‖, (16)

for some constantsM1,M2 > 0.
For 1�k�r andn ∈ N, we define

�(n, k) = max
i∈Ik

∣∣∣ ∑
j∈Jn

vi(j)sgn(h∗∞(j))

∣∣∣ and	(k) = min
{
n ∈ N : �(n, k) �= 0

}
,
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where	(k) is assumed to be 0 if�(n, k) = 0, for alln ∈ N. Finally, letabe the real number
given by

a = max
1�k� r

d	(k)/d�(k). (17)

Sincevi(j) = 0 for all j ∈ ∪�(k)−1
l=1 Jl for i ∈ Ik, we have	(k)��(k) and so 0�a�1.

In what follows, ifA is a matrix, we will denote byAT the transpose matrix ofA and by
‖A‖ the row-sum norm ofA.

Theorem 5. Let K be a finite-dimensional affine subspace of�1(N), 0 /∈ K. Let hp, 1 <
p < ∞, denote the best�p-approximation of0 from K and leth∗∞ be the strict uniform
approximation of0 from K. Then there are positive constantsL1, L2 andp0�1 such that,
for p > p0,

L1a
p�p ‖hp − h∗∞‖�L2a

p, (18)

where a is the real number defined in(17).

Proof. If hp = h∗∞ for all p large enough then, by Theorem 4,�(n, k) = 0, for allnand all
k. Thusa = 0 and (18) holds. On the other hand, if	(k) = �(k) for somek ∈ {1,2, . . . , r},
thena = 1 and (18) follows from Theorems 2 and 3. Therefore, we assume	(k) > �(k),
all k. This implies that 0< a < 1 and (see Theorem 3)p ‖hp − h∗∞‖ → 0 asp → ∞.

Set	 = max{	(k) : d	(k)/d�(k) = a}, n = max{	, r} andJ = ∪n
l=1Jl .

Let�p = (�p(i))i∈I be the unique vector inRI such that

hp = h∗∞ +
∑
i∈I

�p(i)vi + wp, (19)

with wp ∈ V0. Taking into account (14) and (16), we deduce that

M̃1‖�p‖�‖hp − h∗∞‖�M̃2‖�p‖, (20)

for some constants̃M1, M̃2 > 0. Hence the rate of convergence of‖hp − h∗∞‖ will be also
determined by the norm of the vector�p.
SinceJ is a finite set andhp → h∗∞, there existsp0�1 such that forp > p0,

2‖hp − h∗∞‖ < dn − dn+1 (21)

and sgn(hp(j)) = sgn(h∗∞(j)) for all j ∈ J.
Thus forp > p0, taking into account thatwp(j) = 0 for all j ∈ J and applying the

Taylor’s formula of order 1 to the function
(z) = (1+ z)p−1 aboutz = 0, we obtain for
j ∈ Jl with 1� l�n,∣∣∣∣hp(j)dl

∣∣∣∣
p−1

=
(
hp(j)

h∗∞(j)

)p−1

=
(
1+

∑
i∈I

�p(i)vi(j)
h∗∞(j)

)p−1

= 1+ 1

h∗∞(j)
(p − 1)

∑
i∈I

�p(i)vi(j) + Rp(j), (22)
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with Rp(j) = o(p‖�p‖) asp → ∞, becausep ‖hp − h∗∞‖ → 0 and by (20) that is just
equivalent top ‖�p‖ → 0.
Puttingv = vi , i ∈ I , in (7) we obtain, forp large,∑

j∈J
vi(j)|hp(j)|p−1sgn(h∗∞(j)) +

∑
j∈Jc

vi(j)|hp(j)|p−1 sgn(hp(j)) = 0

∀i ∈ I . (23)

This nonlinear system can be written as

MHT
p + KT

p = 0, (24)

whereM is the matrixM = (vi(j))(i,j)∈I×J andHp,Kp denote the vectors inRJ andRI ,
respectively, whose components are given by

Hp(j) = |hp(j)|p−1 sgn(h∗∞(j)), j ∈ J

Kp(i) =
∑
j∈Jc

vi(j)|hp(j)|p−1 sgn(hp(j)), i ∈ I .

Taking into account (22) we can express the vectorHT
p like

HT
p = �p−1

J �T + (p − 1)�p−2
J MT �T

p + �p−1
J RT

p ,

where� and Rp are the vectors inRJ given by � := (
sgn(h∗∞(j)

)
j∈J and Rp :=(

Rp(j) sgn(h∗∞(j))
)
j∈J, and�J := (�ij )(i,j)∈J×J is the diagonal matrix such that�jj = dl

if j ∈ Jl , 1� l�n. Substituting in (24) we obtain the system

M
(
�p−1
J �T + (p − 1)�p−2

J MT �T
p + �p−2

J RT
p

)
+ KT

p = 0. (25)

Let �I = (�̃ij )(i,j)∈I×I be the diagonal matrix such that�̃ii = d�(k) if i ∈ Ik, 1�k�r.

Multiplying (25) by�−p+2
I :=

(
�−1
I

)p−2
we have

(p − 1)�−p+2
I M�p−2

J MT �T
p

= −�−p+2
I M�p−1

J �T − �−p+2
I M�p−2

J RT
p − �−p+2

I KT
p . (26)

Observe that the multiplication by�−p+2
I is equivalent to divide bydp−2

�(k) each of equations
in (23) obtained fori ∈ Ik. This operation is justified becausevi(j) = 0 for all j ∈ Jl if
j < �(k).
Next we study each of the terms in the former system. Let us partitionM into blocks

Mk,l , k = 1, . . . , r, l = 1, . . . ,n, whereMk,l = (vi(j))(i,j)∈Ik×Jl . An easy computation
shows that

A(p) := �−p+2
I M�p−2

J MT = (
Ak,s(p)

)s=1,...,r
k=1,...,r ,

whereAk,s(p) is the matrix of ordermk × ms given by

Ak,s(p) =
n∑
l=1

(
dl

d�(k)

)p−2

Mk,lM
T
s,l .



256 J.M. Quesada et al. / Journal of Approximation Theory 135 (2005) 245–257

SinceMk,l is a null matrix ifl < �(k), anddl < d�(k) if l > �(k), then

Ak,s := lim
p→∞Ak,s(p) = Mk,�(k)M

T
s,�(k).

Moreover, sinceMs,�(k) is also a null matrix ifs > k, we conclude thatA := limp→∞ A(p)

is a lower triangular matrix by blocks and so

det(A)=
r∏

k=1

det
(
Mk,�(k)M

T
k,�(k)

)
�= 0.

In particular we have proved that there existsp1�p0 such that the matrixA(p) is non
singular forp�p1.
Analogously, denoting byBp = −�−p+2

I M�p−1
J �T it is easy to check that

Bp(i) = −d�(k)

n∑
l=�(k)

(
dl

d�(k)

)p−1 ∑
j∈Jl

vi(j) sgn(h
∗∞(j)) for i ∈ Ik, 1�k�r.

The definition ofa implies that ifdl/d�(k) > a then
∑

j∈Jl vi(j) sgn(h
∗∞(j)) = 0 for all

i ∈ Ik. On the other hand, the selection ofn implies that there isk0 ∈ {1,2, . . . , r} and
l0 = 	(k0) such thatk0+1� l0�n, dl0/d�(k0) = a and�(l0, k0) = maxi∈Ik0

∣∣ ∑
j∈Jl0 vi(j)

sgn(h∗∞(j))
∣∣ �= 0. Therefore,

0< b := lim
p→∞ ‖Bp‖/ap < ∞.

Similarly, writingCp = −�−p+2
I M�p−2

J RT
p we obtain, fori ∈ Ik, 1�k�r,

Cp(i) = −d�(k)

n∑
l=�(k)

(
dl

d�(k)

)p−1 ∑
j∈Jl

vi(j)Rp(j) sgn(h
∗∞(j))

and then lim
p→∞

‖Cp‖
p ‖�p‖ = 0.

Finally, denotingDp = −�−p+2
I KT

p , we have

Dp(i) =
∑
j∈Jc

vi(j)

∣∣∣∣hp(j)d�(k)

∣∣∣∣
p−1

sgn(hp(j)) for i ∈ Ik, 1�k�r.

Since, forp > p1 (see (21)),

‖hp‖Jc �‖h∗∞‖Jc + ‖hp − h∗∞‖Jc �dn+1 + ‖hp − h∗∞‖ <
1

2
(dn + dn+1) < dn,

and, from the selection ofn, dn/d�(k)�a, for all k ∈ {1,2, . . . , r}, we conclude that
lim
p→∞ ‖Dp‖/ap = 0.

With the notation introduced in the previous paragraphs we can write the system (26) as

(p − 1)A(p)�T
p = Bp + Cp + Dp,
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and so

(p − 1)‖�p‖ = ‖A(p)−1 (
Bp + Cp + Dp

) ‖�‖A(p)−1‖ (‖Bp‖ + ‖Cp‖ + ‖Dp‖) .
Therefore,

(p − 1)‖�p‖
(
1− ‖A(p)−1‖‖Cp‖

(p − 1)‖�p‖
)

�‖A(p)−1‖ ‖Bp‖ + ‖A(p)−1‖ ‖Dp‖.

Dividing the above inequality byap and taking limits asp → ∞ we have
lim supp→∞ p‖�p‖/ap�‖A−1‖ b.

In similar way,

‖Bp‖�(p − 1)‖A(p)‖ ‖�p‖
(
1+ ‖Cp‖

(p − 1)‖A(p)‖ ‖�p‖
)

+ ‖Dp‖

and therefore lim infp→∞ p ‖�p‖/ap�b/‖A‖ . From the above inequalities there exists
p2 > p1 such that, forp > p2,

b

‖A‖ � p ‖�p‖
ap

�b ‖A−1‖. (27)

Finally, taking into account (20) we conclude the proof.�
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