The Polya algorithm in sequence spaces

J.M. Quesada ${ }^{\text {a,*,1 }}$, J. Fernández-Ochoa ${ }^{\text {a }}$, J. Martínez-Moreno ${ }^{\text {a, }, ~}$, J. Bustamante ${ }^{\text {b }}$
${ }^{\text {a }}$ Departamento de Matemáticas, Universidad de Jaén, 23071 Jaén. Spain
${ }^{\mathrm{b}}$ Facultad de Matemáticas, Universidad Autónoma de Puebla, Puebla. Mexico

Received 27 January 2005; accepted 2 May 2005

Abstract

In this paper we consider the problem of best approximation in $\ell_{p}(\mathbb{N}), 1<p \leqslant \infty$. If $h_{p}, 1<p<\infty$ denotes the best ℓ_{p}-approximation of the element $h \in \ell_{1}(\mathbb{N})$ from a finite-dimensional affine subspace K of $\ell_{1}(\mathbb{N}), h \notin K$, then $\lim _{p \rightarrow \infty} h_{p}=h_{\infty}^{*}$, where h_{∞}^{*} is a best uniform approximation of h from K, the so-called strict uniform approximation. Our aim is to give a complete description of the rate of convergence of $\left\|h_{p}-h_{\infty}^{*}\right\|$ as $p \rightarrow \infty$ by proving that there are constants $L_{1}, L_{2}>0$ and $0 \leqslant a \leqslant 1$ such that

$$
L_{1} a^{p} \leqslant p\left\|h_{p}-h_{\infty}^{*}\right\| \leqslant L_{2} a^{p},
$$

for p large enough.
© 2005 Elsevier Inc. All rights reserved.
Keywords: Best approximation; Sequence spaces; Strict uniform approximation; Rate of convergence; Polya algorithm

[^0]
1. Introduction

For $1 \leqslant p<\infty$, we consider the usual $\ell_{p}(\mathbb{N})$ linear space of the sequences $x=$ $\{x(j)\}_{j \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ such that $\sum_{j \in \mathbb{N}}|x(j)|^{p}<\infty$, endowed with the p-norm

$$
\|x\|_{p}=\left(\sum_{j \in \mathbb{N}}|x(j)|^{p}\right)^{1 / p}
$$

and the linear space $\ell_{\infty}(\mathbb{N})$ of the bounded sequences in $\mathbb{R}^{\mathbb{N}}$, with the uniform norm

$$
\|x\|=\|x\|_{\infty}=\sup _{j \in \mathbb{N}}\{|x(j)|\} .
$$

Note that, for all $p>1, \ell_{1}(\mathbb{N}) \subset \ell_{p}(\mathbb{N}) \subset \ell_{\infty}(\mathbb{N})$. Moreover, if $x \in \ell_{1}(\mathbb{N})$ then $\|x\|=\max _{j \in \mathbb{N}}|x(j)|$ and

$$
\begin{equation*}
\|x\| \leqslant\|x\|_{p} \leqslant\|x\|_{1} \tag{1}
\end{equation*}
$$

Let $K \neq \emptyset$ be a subset of $\ell_{1}(\mathbb{N})$. For $h \in \ell_{1}(\mathbb{N}) \backslash K$ and $1 \leqslant p \leqslant \infty$ we say that $h_{p} \in K$ is a best ℓ_{p}-approximation of h from K if

$$
\left\|h_{p}-h\right\|_{p} \leqslant\|f-h\|_{p} \quad \text { for all } f \in K
$$

If $p=\infty$ we will say that h_{∞} is a best uniform approximation of h from K. If K is a finite-dimensional linear subspace of $\ell_{1}(\mathbb{N})$, then the existence of h_{p} is guaranteed. Moreover, there exists a unique best ℓ_{p}-approximation if $1<p<\infty$. In general, the unicity of the best uniform approximation is not guaranteed. However, a unique "strict uniform approximation", h_{∞}^{*}, can be defined [6]. The strict uniform approximation satisfies the next property. Let H denote the set of the best uniform approximation of h from K. For every $g \in H$ we consider the sequence $\tau(g)$ whose coordinates are given by $|g(j)-h(j)|$ arranged in decreasing order. Then h_{∞}^{*} is the only element in H which has $\tau\left(h_{\infty}^{*}\right)$ minimal in the lexicographic ordering. This definition of strict uniform approximation extends the one given by Rice [9] when K is a linear subspace of \mathbb{R}^{n}.

There are quite a few attempts to generalize Rice's definition of strict best approximation when K is a finite linear subspace of $C[a, b]$ or $C_{0}(T)$, the Banach space of all real-valued continuous functions f on T which vanish at infinity, endowed with the supremum norm, where T is a locally convex compact Hausdorff, (see e.g., $[4,5,11,13]$). The existence of the strict uniform approximation is related to the problem of constructing a continuous selection for the metric projection in $C_{0}(T)$. In [5] it is proved that the definition of the strict uniform approximation as the limit of the best L_{p}-approximation as $p \rightarrow \infty$ (if it exists) provides a natural continuous selection in $C_{0}(T)$. The discovery of the connection between the convergence of the Polya algorithm and the existence of continuous selection is due to Sommer [11,12].

When K is an affine subspace of \mathbb{R}^{n}, the convergence of h_{p} to h_{∞}^{*} was proved in [1]. In this context, the first result about the rate of convergence of $\left\|h_{p}-h_{\infty}^{*}\right\|$ appears in [2]. In this paper it is showed that $p\left\|h_{p}-h_{\infty}^{*}\right\|$ is bounded. Subsequently, in [7] the authors established necessary and sufficient conditions on K to get that $p\left\|h_{p}-h_{\infty}^{*}\right\| \rightarrow 0$ as $p \rightarrow \infty$
and in [8] it is proved that there are constants $L_{1}, L_{2}>0$ and $0 \leqslant a \leqslant 1$, depending on K, such that

$$
\begin{equation*}
L_{1} a^{p} \leqslant p\left\|h_{p}-h_{\infty}^{*}\right\| \leqslant L_{2} a^{p} \tag{2}
\end{equation*}
$$

for all p large enough.
Throughout this paper K will be a finite-dimensional affine subspace of $\ell_{1}(\mathbb{N})$. We will assume that $h=0$ and $0 \notin K$. This involves no loss of generality since all relevant properties are translation invariant. In this context, it is also known, [3,6], that $\lim _{p \rightarrow \infty} h_{p}=h_{\infty}^{*}$. In [3] the authors extend the result in [2] by proving that there exist $M>0$ and $p_{0}>1$ such that

$$
p\left\|h_{p}-h_{\infty}^{*}\right\|<M, \quad \text { for all } p \geqslant p_{0}
$$

Our aim is to give a complete description of the rate of convergence of $\left\|h_{p}-h_{\infty}^{*}\right\|$ by generalizing the result (2) to our context of approximation in the space $\ell_{1}(\mathbb{N})$.

2. Notation and preliminary results

For $J \subseteq \mathbb{N}$ we denote $J^{c}=\mathbb{N} \backslash J$. Moreover for $v \in \ell_{\infty}(\mathbb{N})$ we define $\|v\|_{J}=$ $\sup _{j \in J}|v(j)|$. Notice that $\|v\|_{\mathbb{N}}=\|v\|$. The italic letters h, u, v, w and z will be used to denote elements of $\ell_{p}(\mathbb{N})$.

Let K denote a finite-dimensional affine subspace of $\ell_{1}(\mathbb{N}), 0 \notin K$, and $h_{\infty}^{*}\left(h_{p}, 1<\right.$ $p<\infty$) be the strict uniform approximation (the best ℓ_{p}-approximation) of 0 from K. Thus, we can write $K=h_{\infty}^{*}+\mathcal{V}$, where \mathcal{V} is a finite-dimensional linear subspace of $\ell_{1}(\mathbb{N})$ of dimension $m>0(\operatorname{dim}(\mathcal{V})=m)$. We will assume that $\left\|h_{\infty}^{*}\right\|=1$ (this involves no loss of generality). Thus, from (1) and the definition of h_{p}, we obtain

$$
\left\|h_{p}\right\| \leqslant\left\|h_{p}\right\|_{p} \leqslant\left\|h_{\infty}^{*}\right\|_{p} \leqslant\left\|h_{\infty}^{*}\right\|_{1}
$$

and also $\left\|h_{p}-h_{\infty}^{*}\right\| \leqslant\left\|h_{p}\right\|+\left\|h_{\infty}^{*}\right\| \leqslant 2\left\|h_{\infty}^{*}\right\|_{1}$.
Set $J_{0}:=\left\{j \in \mathbb{N}: h_{\infty}^{*}(j)=0\right\}$ and denote

$$
\begin{equation*}
\mathcal{V}_{0}=\left\{v \in \mathcal{V}: v(j)=0, \text { for all } j \in \mathbb{N} \backslash J_{0}\right\} \tag{3}
\end{equation*}
$$

By means of an inductive procedure we define $d_{0}=0$, and for $n \in \mathbb{N}$ such that $\mathbb{N} \neq \cup_{l=0}^{n-1} J_{l}$,

$$
d_{n}=\left\|h_{\infty}^{*}\right\|_{\mathbb{N} \backslash \cup_{l=0}^{n-1} J_{l}} \quad \text { and } \quad J_{n}=\left\{j \in \mathbb{N}:\left|h_{\infty}^{*}(j)\right|=d_{n}\right\} .
$$

If $\mathbb{N}=\cup_{l=0}^{n-1} J_{l}$ for some $n \in \mathbb{N}$, then we obtain a finite strictly decreasing sequence $\left\{d_{l}\right\}_{l=1}^{n-1}$ and a finite family of finite disjoint sets $\left\{J_{l}\right\}_{l=1}^{n-1}$. In this case we will put $d_{n}=0$. In the opposite case, we obtain a strictly decreasing sequence $\left\{d_{n}\right\}_{n \in \mathbb{N}}$ and a denumerable family of finite disjoint sets $\left\{J_{n}\right\}_{n \in \mathbb{N}}$ such that $d_{n} \rightarrow 0$ and $\cup_{l=0}^{\infty} J_{l}=\mathbb{N}$.

For $v \notin \mathcal{V}_{0}$, define

$$
\begin{equation*}
r(v)=\min \left\{n \in \mathbb{N}: v(j) \neq 0, \text { for some } j \in J_{n}\right\} \tag{4}
\end{equation*}
$$

If $h_{p_{i}} \neq h_{\infty}^{*}$, define

$$
\begin{equation*}
u_{i}=\frac{h_{p_{i}}-h_{\infty}^{*}}{\left\|h_{p_{i}}-h_{\infty}^{*}\right\|} \tag{5}
\end{equation*}
$$

Notice that $u_{i} \in \mathcal{V}$. Suppose that $h_{p_{i}} \neq h_{\infty}^{*}$ for infinitely many p_{i}, with $p_{i} \rightarrow \infty$ as $i \rightarrow \infty$. Since $\left\|u_{i}\right\|=1$ and $\operatorname{dim}(\mathcal{V})<\infty$, we can assume, taking a subsequence if necessary, that

$$
\begin{equation*}
\lim _{i \rightarrow \infty} u_{i}=u \in \mathcal{V} \tag{6}
\end{equation*}
$$

with $\|u\|=1$. In that follows, this vector u will play an important role.
The following is a well known result (see for instance [10]).
Theorem 1 (Characterization of the best ℓ_{p}-approximation). A point $h_{p} \in \ell_{p}(\mathbb{N}), 1<$ $p<\infty$, is the best ℓ_{p}-approximation of 0 from K if and only if

$$
\begin{equation*}
\sum_{j \in \mathbb{N}} v(j)\left|h_{p}(j)\right|^{p-1} \operatorname{sgn}\left(h_{p}(j)\right)=0, \quad \text { for all } v \in \mathcal{V} \tag{7}
\end{equation*}
$$

Lemma 1. For $p>1$, let $z_{p} \in \ell_{1}(\mathbb{N})$ and $z \in \ell_{1}(\mathbb{N})$ be such that $\left\|z_{p}-z\right\| \rightarrow 0$ as $p \rightarrow \infty$. If $z \neq 0$, then for p sufficiently large,

$$
\begin{equation*}
\sum_{j \in \mathbb{N}} z(j) z_{p}(j)\left|z_{p}(j)\right|^{p-2}>0 \tag{8}
\end{equation*}
$$

Proof. We can assume that $\|z\|=1$. Write $z_{p}=z+w_{p}$, with $w_{p} \in \ell_{1}(\mathbb{N})$ and $\left\|w_{p}\right\| \rightarrow 0$ as $p \rightarrow \infty$. Let $S=\{j \in \mathbb{N}:|z(j)|=1\}$. Put $\gamma=\|z\|_{S^{c}}<1$ and choose $\delta>0$ such that $\gamma+\delta<1$.

For $\varepsilon=\min \left\{\delta, 1-\gamma-\delta,(\gamma+\delta) /\|z\|_{1}\right\}$, there exists $p^{\prime}>1$ such that for $p>p^{\prime}$, $\left\|w_{p}\right\|<\varepsilon$ and $\operatorname{sgn}\left(z_{p}(j)\right)=\operatorname{sgn}(z(j))$, for all $j \in S$.

If $j \in S$ and $p>p^{\prime}$, then

$$
\left|z_{p}(j)\right|=\left|z(j)+w_{p}(j)\right| \geqslant|z(j)|-\left|w_{p}(j)\right| \geqslant 1-\left\|w_{p}\right\|>1-\varepsilon \geqslant \gamma+\delta
$$

On the other hand, if $j \in S^{c}$ and $p>p^{\prime}$, then

$$
\left|z_{p}(j)\right|=\left|z(j)+w_{p}(j)\right| \leqslant|z(j)|+\left|w_{p}(j)\right| \leqslant \gamma+\left\|w_{p}\right\|<\gamma+\varepsilon \leqslant \gamma+\delta
$$

So, taking into account that $z(j) z_{p}(j) \geqslant z(j) w_{p}(j)$, we have for $p>p^{\prime}$,

$$
\begin{aligned}
\sum_{j \in \mathbb{N}} z(j) z_{p}(j)\left|z_{p}(j)\right|^{p-2} & =\sum_{j \in S}\left|z_{p}(j)\right|\left|z_{p}(j)\right|^{p-2}+\sum_{j \in S^{c}} z(j) z_{p}(j)\left|z_{p}(j)\right|^{p-2} \\
& \geqslant \sum_{j \in S}\left|z_{p}(j)\right|\left|z_{p}(j)\right|^{p-2}+\sum_{j \in S^{c}} z(j) w_{p}(j)\left|z_{p}(j)\right|^{p-2} \\
& >(\gamma+\delta)^{p-2}\left((\gamma+\delta) \operatorname{card}(S)-\left\|w_{p}\right\| \sum_{j \in S^{c}}|z(j)|\right) \\
& \geqslant(\gamma+\delta)^{p-2}\left((\gamma+\delta)-\varepsilon\|z\|_{1}\right) \geqslant 0 .
\end{aligned}
$$

Remark 1. We stand out the fact that if the vector u is defined by (6), then $u \notin \mathcal{V}_{0}$ (see (3)). In other case, applying (7) with $v=u$ and $p=p_{i}$, we have

$$
0=\sum_{j \in \mathbb{N}} u(j)\left|h_{p_{i}}(j)\right|^{p_{i}-1} \operatorname{sgn}\left(h_{p_{i}}(j)\right)=\sum_{j \in J_{0}} u(j)\left|h_{p_{i}}(j)\right|^{p_{i}-1} \operatorname{sgn}\left(h_{p_{i}}(j)\right)
$$

Dividing the above equation by $\left\|h_{p_{i}}-h_{\infty}^{*}\right\|^{p_{i}-1}$, we obtain (recall that $h_{\infty}^{*}(j)=0$ for $j \in J_{0}$)

$$
\sum_{j \in J_{0}} u(j) u_{i}(j)\left|u_{i}(j)\right|^{p_{i}-2}=0
$$

From Lemma 1 we get a contradiction for i large enough.
Lemma 2. Let the linear space \mathcal{V} and the family $\left\{J_{n}\right\}$ be given as above. There exist an integer $r \geqslant 0$, a strictly increasing sequence of integers $\{\sigma(k)\}_{k=0}^{r}$, with $\sigma(0)=0$, and linear subspaces $\mathcal{V}_{k}(0 \leqslant k \leqslant r)$ of \mathcal{V} such that, $\mathcal{V}=\oplus_{k=0}^{r} \mathcal{V}_{k}$ and if $1 \leqslant k \leqslant r$ and $v \in \mathcal{V}_{k} \backslash\{0\}$, then $v(j)=0$ for all $j \in \cup_{l=1}^{\sigma(k)-1} J_{l}$ and $v(j) \neq 0$ for some $j \in J_{\sigma(k)}$.

Proof. If $\operatorname{dim}\left(\mathcal{V}_{0}\right)=m$ (see (3)), we take $\mathcal{V}_{0}=\mathcal{V}$ and $r=0$. In other case, put $\sigma(0)=0$ and suppose that we have constructed linear spaces \mathcal{V}_{k} and the corresponding sequence $\{\sigma(k)\}$ for $k=0,1, \ldots, s$, with the property described above. If $\mathcal{V}=\oplus_{k=0}^{s} \mathcal{V}_{k}$, then by taking $r=s$ we conclude the proof. Otherwise, we write $\mathcal{V}=\left(\bigoplus_{l=0}^{s} \mathcal{V}_{l}\right) \oplus \mathcal{W}_{s}$, where $\mathcal{W}_{s}=\mathcal{V} \cap\left(\bigoplus_{l=0}^{s} \mathcal{V}_{l}\right)^{\perp}$. Set

$$
\mathcal{U}_{s+1}=\left\{v \in \mathcal{W}_{s}: v(j)=0, \quad \text { for all } j \in \cup_{l=1}^{\sigma(s)} J_{l}\right\}
$$

and put $\sigma(s+1):=\min \left\{n \in \mathbb{N}: v(j) \neq 0\right.$ for some $v \in \mathcal{U}_{s+1}$ and some $\left.j \in J_{n}\right\}$. Note that $\sigma(s+1)>\sigma(s)$. Now, we take \mathcal{V}_{s+1} as the linear space generated by a family \mathcal{B} in \mathcal{U}_{s+1} such that $\left.\mathcal{B}\right|_{J_{\sigma(s+1)}}$ is a basis of $\left.\mathcal{U}_{s+1}\right|_{J_{\sigma(s+1)}}$. Finally, observe that this involves a finite inductive procedure.

Lemma 3. If $v \notin \mathcal{V}_{0}$, then there are $j, j^{\prime} \in J_{r(v)}$ (see (4)) such that $v(j) h_{\infty}^{*}(j)>0$ and $v\left(j^{\prime}\right) h_{\infty}^{*}\left(j^{\prime}\right)<0$.

Proof. Suppose the contrary. We can assume that $\|v\|=1$ and $v(j) h_{\infty}^{*}(j) \leqslant 0$ for all $j \in J_{r(v)}$ (if this is not the case, we take the vector $-v$ in place of v).

Fix a positive λ such that $\lambda<d_{r(v)}-d_{r(v)+1} \leqslant d_{r(v)}$ and consider the vector $\tilde{h}=$ $h_{\infty}^{*}+\lambda v \in K$. If $r(v)>1$ and $j \in \cup_{l=1}^{r(v)-1} J_{l}$, then $v(j)=0$ and so $\tilde{h}(j)=h_{\infty}^{*}(j)$. On the other hand, for $j \in J_{r(v)}$, we have

$$
|\tilde{h}(j)|=\left|h_{\infty}^{*}(j)\right|-\lambda|v(j)| \leqslant\left|h_{\infty}^{*}(j)\right|
$$

Notice that the last inequality is strict for some $j \in J_{r(v)}$. Finally, if $j \in \mathbb{N} \backslash \cup_{l=1}^{r(v)} J_{l}$, then

$$
|\tilde{h}(j)| \leqslant\left|h_{\infty}^{*}(j)\right|+\lambda|v(j)| \leqslant d_{r(v)+1}+\lambda<d_{r(v)}
$$

So, the vector \tilde{h} is a best uniform approximation of 0 from K that contradicts the definition of h_{∞}^{*}.

3. Rate of convergence

The next Theorem was proved in [3]. However, we present here a simpler proof whose greater interest is that we do not use the fact that $h_{p} \rightarrow h_{\infty}^{*}$ to conclude that the sequence $p\left\|h_{p}-h_{\infty}^{*}\right\|$ is bounded. The convergence of h_{p} to $h_{\infty}^{*}($ as $p \rightarrow \infty)$ follows as an immediate consequence of our result.

Theorem 2. Let K be a finite-dimensional affine subspace of $\ell_{1}(\mathbb{N}), 0 \notin K$. Let $h_{p}, 1<$ $p<\infty$, denote the best ℓ_{p}-approximation of 0 from K and let h_{∞}^{*} be the strict uniform approximation of 0 from K. Then there exist positive constants M and C such that, for $p>C$,

$$
p\left\|h_{p}-h_{\infty}^{*}\right\| \leqslant M
$$

Proof. It is sufficient to prove that $\lim \inf p_{i}\left\|h_{p_{i}}-h_{\infty}^{*}\right\|<\infty$ for every increasing sequence $p_{i} \in(1, \infty)$ such that $h_{p_{i}} \neq h_{\infty}^{*}, p_{i} \rightarrow \infty$, and $u_{i} \rightarrow u$ (see (5)) as $i \rightarrow \infty$. From Remark 1 we know that $u \notin \mathcal{V}_{0}$, thus the integer $r(u)$ is well defined (see (4)). From Lemma 3 there exists $j_{0} \in J_{r(u)}$ such that $u\left(j_{0}\right) h_{\infty}^{*}\left(j_{0}\right)>0$. Since

$$
p_{i}\left\|h_{p_{i}}-h_{\infty}^{*}\right\|=p_{i}\left|h_{p_{i}}\left(j_{0}\right)-h_{\infty}^{*}\left(j_{0}\right)\right| \frac{\left\|h_{p_{i}}-h_{\infty}^{*}\right\|}{\left|h_{p_{i}}\left(j_{0}\right)-h_{\infty}^{*}\left(j_{0}\right)\right|},
$$

and

$$
\lim _{i \rightarrow \infty} \frac{\left\|h_{p_{i}}-h_{\infty}^{*}\right\|}{\left|h_{p_{i}}\left(j_{0}\right)-h_{\infty}^{*}\left(j_{0}\right)\right|}=\frac{1}{\left|u\left(j_{0}\right)\right|},
$$

it is sufficient to prove that the sequence $p_{i}\left|h_{p_{i}}\left(j_{0}\right)-h_{\infty}^{*}\left(j_{0}\right)\right|$ is bounded.
We need some notation. For each i let Γ_{i} be the finite set of indices $j \in \mathbb{N}$ such that $\left|h_{p_{i}}(j)\right|>d_{r(u)}$ and $u(j) \neq 0$. Moreover, define

$$
\gamma=\left(d_{r(u)}-d_{r(u)+1}\right) /\left(2\left\|h_{\infty}^{*}\right\|_{1}\right) .
$$

Since $J_{r(u)}$ is a finite set and $u_{i} \rightarrow u$, there exists N such that, for $i>N,\left\|u_{i}-u\right\|<\gamma$ and $\operatorname{sgn}\left(u_{i}(j)\right)=\operatorname{sgn}(u(j))$, for all $j \in J_{r(u)}$ such that $u(j) \neq 0$.

If $i>N$, then $\operatorname{sgn}\left(h_{\infty}^{*}\left(j_{0}\right)\right)=\operatorname{sgn}\left(u\left(j_{0}\right)\right)=\operatorname{sgn}\left(u_{i}\left(j_{0}\right)\right)=\operatorname{sgn}\left(h_{p_{i}}\left(j_{0}\right)-h_{\infty}^{*}\left(j_{0}\right)\right)$. Therefore $\left|h_{p_{i}}\left(j_{0}\right)\right|>\left|h_{\infty}^{*}\left(j_{0}\right)\right|=d_{r(u)}$ and $\Gamma_{i} \neq \emptyset$. Moreover, if $j \in \Gamma_{i} \cap J_{r(u)}$, then $\operatorname{sgn}(u(j))=\operatorname{sgn}\left(u_{i}(j)\right)=\operatorname{sgn}\left(h_{p_{i}}(j)-h_{\infty}^{*}(j)\right)=\operatorname{sgn}\left(h_{p_{i}}(j)\right)$.

On the other hand if $j \in \Gamma_{i} \cap J_{r(u)}^{c}$, then $\operatorname{sgn}\left(u_{i}(j)\right)=\operatorname{sgn}(u(j))$. Indeed, if $j \in \Gamma_{i} \cap J_{r(u)}^{c}$, then $\left|h_{\infty}^{*}(j)\right| \leqslant d_{r(u)+1}$ and then $\left|h_{p_{i}}(j)-h_{\infty}^{*}(j)\right|>d_{r(u)}-d_{r(u)+1}$. If $\operatorname{sgn}\left(u_{i}(j)\right) \neq$ $\operatorname{sgn}(u(j))$, then

$$
\left\|u_{i}-u\right\| \geqslant\left|u_{i}(j)-u(j)\right| \geqslant\left|u_{i}(j)\right|=\frac{\left|h_{p_{i}}(j)-h_{\infty}^{*}(j)\right|}{\left\|h_{p_{i}}-h_{\infty}^{*}\right\|}>\frac{d_{r(u)}-d_{r(u)+1}}{2\left\|h_{\infty}^{*}\right\|_{1}}=\gamma
$$

and we arrive to a contradiction.

Now for $i>N$ (we use below (7) with $v=u$ and $p=p_{i}$)

$$
\begin{aligned}
& \left|u\left(j_{0}\right)\right|\left(1+\left(p_{i}-1\right) \frac{\left|h_{p_{i}}\left(j_{0}\right)-h_{\infty}^{*}\left(j_{0}\right)\right|}{d_{r(u)}}\right) \\
& \quad \leqslant\left|u\left(j_{0}\right)\right|\left(1+\frac{h_{p_{i}}\left(j_{0}\right)-h_{\infty}^{*}\left(j_{0}\right)}{h_{\infty}^{*}\left(j_{0}\right)}\right)^{p_{i}-1} \leqslant\left|u\left(j_{0}\right)\right|\left|\frac{h_{p_{i}}\left(j_{0}\right)}{d_{r(u)}}\right|^{p_{i}-1} \\
& \quad \leqslant \sum_{j \in \Gamma_{i}}|u(j)|\left|\frac{h_{p_{i}}(j)}{d_{r(u)}}\right|^{p_{i}-1}=\sum_{j \in \Gamma_{i}} u(j)\left|\frac{h_{p_{i}}(j)}{d_{r(u)}}\right|^{p_{i}-1} \operatorname{sgn}\left(h_{p_{i}}(j)\right) \\
& \quad=-\sum_{j \in \Gamma_{i}^{c}} u(j)\left|\frac{h_{p_{i}}(j)}{d_{r(u)}}\right|^{p_{i}-1} \operatorname{sgn}\left(h_{p_{i}}(j)\right) \leqslant\|u\|_{1 .} .
\end{aligned}
$$

Finally, for $i>N$,

$$
\begin{aligned}
& p_{i}\left|h_{p_{i}}\left(j_{0}\right)-h_{\infty}^{*}\left(j_{0}\right)\right| \\
& \quad \leqslant\left|u\left(j_{0}\right)\right|\left|h_{p_{i}}\left(j_{0}\right)-h_{\infty}^{*}\left(j_{0}\right)\right|+d_{r(u)}\left|u\left(j_{0}\right)\right|\left(1+\left(p_{i}-1\right) \frac{\left|h_{p_{i}}\left(j_{0}\right)-h_{\infty}^{*}\left(j_{0}\right)\right|}{d_{r(u)}}\right) \\
& \quad \leqslant\left|u\left(j_{0}\right)\right|\left\|h_{p_{i}}-h_{\infty}^{*}\right\|+d_{r(u)}\|u\|_{1} \leqslant 2\left|u\left(j_{0}\right)\right|\left\|h_{\infty}^{*}\right\|_{1}+d_{r(u)}\|u\|_{1} .
\end{aligned}
$$

Corollary 1. If K, h_{p} and h_{∞}^{*} are given as in Theorem (2), then

$$
\lim _{p \rightarrow \infty} h_{p}=h_{\infty}^{*}
$$

Theorem 3. If K, h_{p} and h_{∞}^{*} are given as in Theorem 2 , then $p\left\|h_{p}-h_{\infty}^{*}\right\| \rightarrow 0$ as $p \rightarrow \infty$ if and only if, for all $1 \leqslant k \leqslant r$ and every $v \in \mathcal{V}_{k}$,

$$
\begin{equation*}
\sum_{j \in J_{\sigma(k)}} v(j) \operatorname{sgn}\left(h_{\infty}^{*}(j)\right)=0 \tag{9}
\end{equation*}
$$

where the spaces $\mathcal{V}_{k}(1 \leqslant k \leqslant r)$ are as in Lemma 2.
Proof. (\Rightarrow) Let v be a vector in \mathcal{V}_{k}. Since $J_{\sigma(k)}$ is finite and $h_{p} \rightarrow h_{\infty}^{*}$ as $p \rightarrow \infty$, there exists N such that, for $p>N,\left\|h_{p}-h_{\infty}^{*}\right\|<\frac{1}{2}\left(d_{\sigma(k)}-d_{\sigma(k)+1}\right)$ and $\operatorname{sgn}\left(h_{p}(j)\right)=\operatorname{sgn}\left(h_{\infty}^{*}(j)\right)$ for all $j \in J_{\sigma(k)}$. Thus, if $j \in J_{\sigma(k)}$, then

$$
\lim _{p \rightarrow \infty}\left|\frac{h_{p}(j)}{d_{\sigma(k)}}\right|^{p-1}=\lim _{p \rightarrow \infty}\left(1+\frac{h_{p}(j)-h_{\infty}^{*}(j)}{h_{\infty}^{*}(j)}\right)^{p-1}=1,
$$

because $\lim _{p \rightarrow \infty} p\left(h_{p}(j)-h_{\infty}^{*}(j)\right)=0$. On the other hand, if $\Omega_{k}=J_{0} \cup\left(\cup_{l>\sigma(k)} J_{l}\right)$ and $p>N$, then

$$
\left\|h_{p}\right\|_{\Omega_{k}} \leqslant\left\|h_{\infty}^{*}\right\|_{\Omega_{k}}+\left\|h_{p}-h_{\infty}^{*}\right\|_{\Omega_{k}}<\frac{1}{2}\left(d_{\sigma(k)}+d_{\sigma(k)+1}\right)<d_{\sigma(k)} .
$$

Applying (7) to the vector v and dividing by $d_{\sigma(k)}^{p-1}$, we have

$$
\begin{equation*}
\sum_{j \in J_{\sigma(k)}} v(j)\left|\frac{h_{p}(j)}{d_{\sigma(k)}}\right|^{p-1} \operatorname{sgn}\left(h_{\infty}^{*}(j)\right)+\sum_{j \in \Omega_{k}} v(j)\left|\frac{h_{p}(j)}{d_{\sigma(k)}}\right|^{p-1} \operatorname{sgn}\left(h_{p}(j)\right)=0 . \tag{10}
\end{equation*}
$$

So, letting $p \rightarrow \infty$ we obtain (9).
(\Leftarrow) Suppose that $p\left\|h_{p}-h_{\infty}^{*}\right\|$ does not converge to 0 as $p \rightarrow \infty$. This is just equivalent to the existence of a sequence $p_{i} \rightarrow \infty$ such that $p_{i}\left\|h_{p_{i}}-h_{\infty}^{*}\right\| \rightarrow \mu>0$. Consider the vectors u_{i} defined as in (5) and let u be its corresponding vector limit (6). Recall that $u \notin \mathcal{V}_{0}$. We obtain an equation similar to (10) by applying (7), con $v=u$ and $p=p_{i}$, and dividing by $d_{r(u)}^{p-1}$,

$$
\begin{align*}
& \sum_{j \in J_{r(u)}} u(j)\left|\frac{h_{p_{i}}(j)}{d_{r(u)}}\right|^{p_{i}-1} \operatorname{sgn}\left(h_{\infty}^{*}(j)\right) \\
& \quad+\left.\sum_{j \in J_{r(u)}^{c}} u(j)| | \frac{h_{p_{i}}(j)}{d_{r(u)}}\right|^{p_{i}-1} \operatorname{sgn}\left(h_{p_{i}}(j)\right)=0 . \tag{11}
\end{align*}
$$

In this case, for $j \in J_{r(u)}$,

$$
\lim _{i \rightarrow \infty} p_{i}\left(h_{p_{i}}(j)-h_{\infty}^{*}(j)\right)=\lim _{i \rightarrow \infty} p_{i}\left\|h_{p_{i}}-h_{\infty}^{*}\right\| \frac{h_{p_{i}}(j)-h_{\infty}^{*}(j)}{\left\|h_{p_{i}}-h_{\infty}^{*}\right\|}=\mu u(j)
$$

So, taking limits in (11) and keeping in mind that $\alpha e^{\beta \alpha}>\alpha$ for all $\alpha \neq 0$ and $\beta>0$, we obtain,

$$
\begin{aligned}
0 & =\sum_{j \in J_{r(u)}} u(j) e^{\mu u(j) / h_{\infty}^{*}(j)} \operatorname{sgn}\left(h_{\infty}^{*}(j)\right) \\
& =\sum_{j \in J_{r(u)}} u(j) \operatorname{sgn}\left(h_{\infty}^{*}(j)\right) e^{\left(\mu / d_{r(u)}\right) u(j) \operatorname{sgn}\left(h_{\infty}^{*}(j)\right)}>\sum_{j \in J_{r(u)}} u(j) \operatorname{sgn}\left(h_{\infty}^{*}(j)\right) .
\end{aligned}
$$

Then (9) does not hold for a vector $v \in \mathcal{V} \backslash \mathcal{V}_{0}$.
Theorem 4. If K, h_{p} and h_{∞}^{*} are given as in Theorem 2 , then there exists $p_{0}>1$ such that $h_{p}=h_{\infty}^{*}$ for all $p>p_{0}$ if and only if, for all $v \in \mathcal{V}$ and all $n \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{j \in J_{n}} v(j) \operatorname{sgn}\left(h_{\infty}^{*}(j)\right)=0 \tag{12}
\end{equation*}
$$

Proof. By Theorem 1 we have $h_{p}=h_{\infty}^{*}$ for all $p>p_{0}$ if and only if

$$
\sum_{j \in \mathbb{N}} v(j)\left|h_{\infty}^{*}(j)\right|^{p-1} \operatorname{sgn}\left(h_{\infty}^{*}(j)\right)=0,
$$

for all $v \in \mathcal{V}$. Since $h_{\infty}^{*}(j)=0$ for $j \in J_{0}$, we can write the above equation as

$$
\begin{equation*}
\sum_{n \in \mathbb{N}} d_{n}^{p-1} \sum_{j \in J_{n}} v(j) \operatorname{sgn}\left(h_{\infty}^{*}(j)\right)=0 \tag{13}
\end{equation*}
$$

If (12) holds then (13) follows trivially. On the other hand, if (13) is true, then dividing the last equation by d_{i}^{p-1}, for $i=1,2, \ldots$, respectively, and taking limits as $p \rightarrow \infty$ we obtain (12) by means of an inductive procedure.

Lemma 4. There exists $M>0$ such that, for plarge enough,

$$
\begin{equation*}
\left\|h_{p}-h_{\infty}^{*}\right\|_{\hat{J}} \leqslant\left\|h_{p}-h_{\infty}^{*}\right\| \leqslant M\left\|h_{p}-h_{\infty}^{*}\right\|_{\hat{J}}, \tag{14}
\end{equation*}
$$

where $\hat{J}=\cup_{k=1}^{r} J_{\sigma(k)}$.
Proof. Note that the first inequality in (14) is obvious. For the second, suppose, to the contrary, that there exists a sequence $p_{i} \rightarrow \infty$, with $h_{p_{i}} \neq h_{\infty}^{*}$, such that

$$
\begin{equation*}
\frac{\left\|h_{p_{i}}-h_{\infty}^{*}\right\|_{\hat{J}}}{\left\|h_{p_{i}}-h_{\infty}^{*}\right\|} \rightarrow 0 \quad \text { as } i \rightarrow \infty \tag{15}
\end{equation*}
$$

Consider for this sequence the vectors u_{i} as in (5) and its corresponding vector limit u. From (15) we conclude that $u(j)=0$ for all $j \in \hat{J}$. Hence $u \in \mathcal{V}_{0}$. A contradiction.

The inequalities in (14) show that the rate of convergence of $\left\|h_{p}-h_{\infty}^{*}\right\|$ is just determined by the set of indices $\hat{J}=\cup_{k=1}^{r} J_{\sigma(k)}$.

4. The main result

Let $\mathcal{W}_{0}=\oplus_{k=1}^{r} \mathcal{V}_{k}, m_{0}=\operatorname{dim}\left(\mathcal{W}_{0}\right), \mathcal{B}=\left\{v_{1}, \ldots, v_{m_{0}}\right\}$ be a basis of \mathcal{W}_{0} and $\mathbf{I}=$ $\left\{1, \ldots, m_{0}\right\}$, where \mathcal{V}_{k} are the linear subspaces of \mathcal{V} given in Lemma 2. We assume that if $i \in \mathbf{I}$, then $v_{i} \in \mathcal{V}_{k}$ for some $k \in\{1, \ldots, r\}$. Let $\left\{I_{k}\right\}_{k=1}^{r}$ be the partition of \mathbf{I} given be $I_{k}=\left\{i \in \mathbf{I}: v_{i} \in \mathcal{V}_{k}\right\}$ and put $m_{k}=\operatorname{card}\left(I_{k}\right)$.

Given any vector $v \in \mathcal{V}$ there are two unique vectors $\Lambda_{v}=\left(\lambda_{v}(i)\right)_{i \in \mathbf{I}} \in \mathbb{R}^{\mathbf{I}}$ and $w_{v} \in \mathcal{V}_{0}$ such that

$$
v=\sum_{i \in \mathbf{I}} \lambda_{v}(i) v_{i}+w_{v}
$$

Since $w_{v}(j)=0$ for all $j \in \hat{J}$ (see (3)), $\left\|\Lambda_{v}\right\|:=\max _{i \in \mathbf{I}}\left|\lambda_{v}(i)\right|$ is a norm on $\left.\mathcal{V}\right|_{\hat{J}}$. So, by the equivalence of norms in $\left.\mathcal{V}\right|_{\hat{J}}$, we have

$$
\begin{equation*}
M_{1}\left\|\Lambda_{v}\right\| \leqslant\|v\|_{\hat{J}} \leqslant M_{2}\left\|\Lambda_{v}\right\| \tag{16}
\end{equation*}
$$

for some constants $M_{1}, M_{2}>0$.
For $1 \leqslant k \leqslant r$ and $n \in \mathbb{N}$, we define

$$
\Sigma(n, k)=\max _{i \in I_{k}}\left|\sum_{j \in J_{n}} v_{i}(j) \operatorname{sgn}\left(h_{\infty}^{*}(j)\right)\right| \text { and } \eta(k)=\min \{n \in \mathbb{N}: \Sigma(n, k) \neq 0\}
$$

where $\eta(k)$ is assumed to be 0 if $\Sigma(n, k)=0$, for all $n \in \mathbb{N}$. Finally, let a be the real number given by

$$
\begin{equation*}
a=\max _{1 \leqslant k \leqslant r} d_{\eta(k)} / d_{\sigma(k)} . \tag{17}
\end{equation*}
$$

Since $v_{i}(j)=0$ for all $j \in \cup_{l=1}^{\sigma(k)-1} J_{l}$ for $i \in I_{k}$, we have $\eta(k) \geqslant \sigma(k)$ and so $0 \leqslant a \leqslant 1$.
In what follows, if A is a matrix, we will denote by A^{T} the transpose matrix of A and by $\|A\|$ the row-sum norm of A.

Theorem 5. Let K be a finite-dimensional affine subspace of $\ell_{1}(\mathbb{N}), 0 \notin K$. Let $h_{p}, 1<$ $p<\infty$, denote the best ℓ_{p}-approximation of 0 from K and let h_{∞}^{*} be the strict uniform approximation of 0 from K. Then there are positive constants L_{1}, L_{2} and $p_{0} \geqslant 1$ such that, for $p>p_{0}$,

$$
\begin{equation*}
L_{1} a^{p} \leqslant p\left\|h_{p}-h_{\infty}^{*}\right\| \leqslant L_{2} a^{p} \tag{18}
\end{equation*}
$$

where a is the real number defined in (17).
Proof. If $h_{p}=h_{\infty}^{*}$ for all p large enough then, by Theorem $4, \Sigma(n, k)=0$, for all n and all k. Thus $a=0$ and (18) holds. On the other hand, if $\eta(k)=\sigma(k)$ for some $k \in\{1,2, \ldots, r\}$, then $a=1$ and (18) follows from Theorems 2 and 3. Therefore, we assume $\eta(k)>\sigma(k)$, all k. This implies that $0<a<1$ and (see Theorem 3) $p\left\|h_{p}-h_{\infty}^{*}\right\| \rightarrow 0$ as $p \rightarrow \infty$.

Set $\eta=\max \left\{\eta(k): d_{\eta(k)} / d_{\sigma(k)}=a\right\}, \mathbf{n}=\max \{\eta, r\}$ and $\mathbf{J}=\cup_{l=1}^{\mathbf{n}} J_{l}$.
Let $\Lambda_{p}=\left(\lambda_{p}(i)\right)_{i \in \mathbf{I}}$ be the unique vector in $\mathbb{R}^{\mathbf{I}}$ such that

$$
\begin{equation*}
h_{p}=h_{\infty}^{*}+\sum_{i \in \mathbf{I}} \lambda_{p}(i) v_{i}+w_{p} \tag{19}
\end{equation*}
$$

with $w_{p} \in \mathcal{V}_{0}$. Taking into account (14) and (16), we deduce that

$$
\begin{equation*}
\tilde{M}_{1}\left\|\Lambda_{p}\right\| \leqslant\left\|h_{p}-h_{\infty}^{*}\right\| \leqslant \tilde{M}_{2}\left\|\Lambda_{p}\right\| \tag{20}
\end{equation*}
$$

for some constants $\tilde{M}_{1}, \tilde{M}_{2}>0$. Hence the rate of convergence of $\left\|h_{p}-h_{\infty}^{*}\right\|$ will be also determined by the norm of the vector Λ_{p}.

Since \mathbf{J} is a finite set and $h_{p} \rightarrow h_{\infty}^{*}$, there exists $p_{0} \geqslant 1$ such that for $p>p_{0}$,

$$
\begin{equation*}
2\left\|h_{p}-h_{\infty}^{*}\right\|<d_{\mathbf{n}}-d_{\mathbf{n}+1} \tag{21}
\end{equation*}
$$

and $\operatorname{sgn}\left(h_{p}(j)\right)=\operatorname{sgn}\left(h_{\infty}^{*}(j)\right)$ for all $j \in \mathbf{J}$.
Thus for $p>p_{0}$, taking into account that $w_{p}(j)=0$ for all $j \in \mathbf{J}$ and applying the Taylor's formula of order 1 to the function $\varphi(z)=(1+z)^{p-1}$ about $z=0$, we obtain for $j \in J_{l}$ with $1 \leqslant l \leqslant \mathbf{n}$,

$$
\begin{align*}
\left|\frac{h_{p}(j)}{d_{l}}\right|^{p-1} & =\left(\frac{h_{p}(j)}{h_{\infty}^{*}(j)}\right)^{p-1}=\left(1+\sum_{i \in \mathbf{I}} \frac{\lambda_{p}(i) v_{i}(j)}{h_{\infty}^{*}(j)}\right)^{p-1} \\
& =1+\frac{1}{h_{\infty}^{*}(j)}(p-1) \sum_{i \in \mathbf{I}} \lambda_{p}(i) v_{i}(j)+R_{p}(j) \tag{22}
\end{align*}
$$

with $R_{p}(j)=o\left(p\left\|\Lambda_{p}\right\|\right)$ as $p \rightarrow \infty$, because $p\left\|h_{p}-h_{\infty}^{*}\right\| \rightarrow 0$ and by (20) that is just equivalent to $p\left\|\Lambda_{p}\right\| \rightarrow 0$.

Putting $v=v_{i}, i \in \mathbf{I}$, in (7) we obtain, for p large,

$$
\begin{align*}
& \sum_{j \in \mathbf{J}} v_{i}(j)\left|h_{p}(j)\right|^{p-1} \operatorname{sgn}\left(h_{\infty}^{*}(j)\right)+\sum_{j \in \mathbf{J}^{c}} v_{i}(j)\left|h_{p}(j)\right|^{p-1} \operatorname{sgn}\left(h_{p}(j)\right)=0 \\
& \quad \forall i \in \mathbf{I} . \tag{23}
\end{align*}
$$

This nonlinear system can be written as

$$
\begin{equation*}
M H_{p}^{T}+K_{p}^{T}=0 \tag{24}
\end{equation*}
$$

where M is the matrix $M=\left(v_{i}(j)\right)_{(i, j) \in \mathbf{I} \times \mathbf{J}}$ and H_{p}, K_{p} denote the vectors in $\mathbb{R}^{\mathbf{J}}$ and $\mathbb{R}^{\mathbf{I}}$, respectively, whose components are given by

$$
\begin{aligned}
& H_{p}(j)=\left|h_{p}(j)\right|^{p-1} \operatorname{sgn}\left(h_{\infty}^{*}(j)\right), \quad j \in \mathbf{J} \\
& K_{p}(i)=\sum_{j \in \mathbf{J}^{c}} v_{i}(j)\left|h_{p}(j)\right|^{p-1} \operatorname{sgn}\left(h_{p}(j)\right), \quad i \in \mathbf{I} .
\end{aligned}
$$

Taking into account (22) we can express the vector H_{p}^{T} like

$$
H_{p}^{T}=\Delta_{\mathbf{J}}^{p-1} \Upsilon^{T}+(p-1) \Delta_{\mathbf{J}}^{p-2} M^{T} \Lambda_{p}^{T}+\Delta_{\mathbf{J}}^{p-1} R_{p}^{T}
$$

where Υ and R_{p} are the vectors in $\mathbb{R}^{\mathbf{J}}$ given by $\Upsilon:=\left(\operatorname{sgn}\left(h_{\infty}^{*}(j)\right)_{j \in \mathbf{J}}\right.$ and $R_{p}:=$ $\left(R_{p}(j) \operatorname{sgn}\left(h_{\infty}^{*}(j)\right)\right)_{j \in \mathbf{J}}$, and $\Delta_{\mathbf{J}}:=\left(\delta_{i j}\right)_{(i, j) \in \mathbf{J} \times \mathbf{J}}$ is the diagonal matrix such that $\delta_{j j}=d_{l}$ if $j \in J_{l}, 1 \leqslant l \leqslant \mathbf{n}$. Substituting in (24) we obtain the system

$$
\begin{equation*}
M\left(\Delta_{\mathbf{J}}^{p-1} \Upsilon^{T}+(p-1) \Delta_{\mathbf{J}}^{p-2} M^{T} \Lambda_{p}^{T}+\Delta_{\mathbf{J}}^{p-2} R_{p}^{T}\right)+K_{p}^{T}=0 \tag{25}
\end{equation*}
$$

Let $\Delta_{\mathbf{I}}=\left(\tilde{\delta}_{i j}\right)_{(i, j) \in \mathbf{I} \times \mathbf{I}}$ be the diagonal matrix such that $\tilde{\delta}_{i i}=d_{\sigma(k)}$ if $i \in I_{k}, 1 \leqslant k \leqslant r$. Multiplying (25) by $\Delta_{\mathbf{I}}^{-p+2}:=\left(\Delta_{\mathbf{I}}^{-1}\right)^{p-2}$ we have

$$
\begin{align*}
& (p-1) \Delta_{\mathbf{I}}^{-p+2} M \Delta_{\mathbf{J}}^{p-2} M^{T} \Lambda_{p}^{T} \\
& \quad=-\Delta_{\mathbf{I}}^{-p+2} M \Delta_{\mathbf{J}}^{p-1} \Upsilon^{T}-\Delta_{\mathbf{I}}^{-p+2} M \Delta_{\mathbf{J}}^{p-2} R_{p}^{T}-\Delta_{\mathbf{I}}^{-p+2} K_{p}^{T} \tag{26}
\end{align*}
$$

Observe that the multiplication by $\Delta_{\mathbf{I}}^{-p+2}$ is equivalent to divide by $d_{\sigma(k)}^{p-2}$ each of equations in (23) obtained for $i \in I_{k}$. This operation is justified because $v_{i}(j) \stackrel{\sigma(k)}{=} 0$ for all $j \in J_{l}$ if $j<\sigma(k)$.

Next we study each of the terms in the former system. Let us partition M into blocks $M_{k, l}, k=1, \ldots, r, l=1, \ldots, \mathbf{n}$, where $M_{k, l}=\left(v_{i}(j)\right)_{(i, j) \in I_{k} \times J_{l}}$. An easy computation shows that

$$
A(p):=\Delta_{\mathbf{I}}^{-p+2} M \Delta_{\mathbf{J}}^{p-2} M^{T}=\left(A_{k, s}(p)\right)_{k=1, \ldots, r}^{s=1, \ldots, r}
$$

where $A_{k, s}(p)$ is the matrix of order $m_{k} \times m_{s}$ given by

$$
A_{k, s}(p)=\sum_{l=1}^{\mathbf{n}}\left(\frac{d_{l}}{d_{\sigma(k)}}\right)^{p-2} M_{k, l} M_{s, l}^{T} .
$$

Since $M_{k, l}$ is a null matrix if $l<\sigma(k)$, and $d_{l}<d_{\sigma(k)}$ if $l>\sigma(k)$, then

$$
A_{k, s}:=\lim _{p \rightarrow \infty} A_{k, s}(p)=M_{k, \sigma(k)} M_{s, \sigma(k)}^{T}
$$

Moreover, since $M_{s, \sigma(k)}$ is also a null matrix if $s>k$, we conclude that $A:=\lim _{p \rightarrow \infty} A(p)$ is a lower triangular matrix by blocks and so

$$
\operatorname{det}(A)=\prod_{k=1}^{r} \operatorname{det}\left(M_{k, \sigma(k)} M_{k, \sigma(k)}^{T}\right) \neq 0
$$

In particular we have proved that there exists $p_{1} \geqslant p_{0}$ such that the matrix $A(p)$ is non singular for $p \geqslant p_{1}$.

Analogously, denoting by $B_{p}=-\Delta_{\mathbf{I}}^{-p+2} M \Delta_{\mathbf{J}}^{p-1} \Upsilon^{T}$ it is easy to check that

$$
B_{p}(i)=-d_{\sigma(k)} \sum_{l=\sigma(k)}^{\mathbf{n}}\left(\frac{d_{l}}{d_{\sigma(k)}}\right)^{p-1} \sum_{j \in J_{l}} v_{i}(j) \operatorname{sgn}\left(h_{\infty}^{*}(j)\right) \quad \text { for } i \in I_{k}, \quad 1 \leqslant k \leqslant r .
$$

The definition of a implies that if $d_{l} / d_{\sigma(k)}>a$ then $\sum_{j \in J_{l}} v_{i}(j) \operatorname{sgn}\left(h_{\infty}^{*}(j)\right)=0$ for all $i \in I_{k}$. On the other hand, the selection of \mathbf{n} implies that there is $k_{0} \in\{1,2, \ldots, r\}$ and $l_{0}=\eta\left(k_{0}\right)$ such that $k_{0}+1 \leqslant l_{0} \leqslant \mathbf{n}, d_{l_{0}} / d_{\sigma\left(k_{0}\right)}=a$ and $\Sigma\left(l_{0}, k_{0}\right)=\max _{i \in I_{k_{0}}} \mid \sum_{j \in J_{l_{0}}} v_{i}(j)$ $\operatorname{sgn}\left(h_{\infty}^{*}(j)\right) \mid \neq 0$. Therefore,

$$
0<b:=\lim _{p \rightarrow \infty}\left\|B_{p}\right\| / a^{p}<\infty .
$$

Similarly, writing $C_{p}=-\Delta_{\mathbf{I}}^{-p+2} M \Delta_{\mathbf{J}}^{p-2} R_{p}^{T}$ we obtain, for $i \in I_{k}, 1 \leqslant k \leqslant r$,

$$
C_{p}(i)=-d_{\sigma(k)} \sum_{l=\sigma(k)}^{\mathbf{n}}\left(\frac{d_{l}}{d_{\sigma(k)}}\right)^{p-1} \sum_{j \in J_{l}} v_{i}(j) R_{p}(j) \operatorname{sgn}\left(h_{\infty}^{*}(j)\right)
$$

and then $\lim _{p \rightarrow \infty} \frac{\left\|C_{p}\right\|}{p\left\|\Lambda_{p}\right\|}=0$.
Finally, denoting $D_{p}=-\Delta_{\mathbf{I}}^{-p+2} K_{p}^{T}$, we have

$$
D_{p}(i)=\sum_{j \in \mathbf{J}^{c}} v_{i}(j)\left|\frac{h_{p}(j)}{d_{\sigma(k)}}\right|^{p-1} \operatorname{sgn}\left(h_{p}(j)\right) \quad \text { for } i \in I_{k}, \quad 1 \leqslant k \leqslant r .
$$

Since, for $p>p_{1}$ (see (21)),

$$
\left\|h_{p}\right\|_{\mathbf{J}^{c}} \leqslant\left\|h_{\infty}^{*}\right\|_{\mathbf{J}^{c}}+\left\|h_{p}-h_{\infty}^{*}\right\|_{\mathbf{J}^{c}} \leqslant d_{\mathbf{n}+1}+\left\|h_{p}-h_{\infty}^{*}\right\|<\frac{1}{2}\left(d_{\mathbf{n}}+d_{\mathbf{n}+1}\right)<d_{\mathbf{n}}
$$

and, from the selection of $\mathbf{n}, d_{\mathbf{n}} / d_{\sigma(k)} \leqslant a$, for all $k \in\{1,2, \ldots, r\}$, we conclude that $\lim _{p \rightarrow \infty}\left\|D_{p}\right\| / a^{p}=0$.

With the notation introduced in the previous paragraphs we can write the system (26) as

$$
(p-1) A(p) \Lambda_{p}^{T}=B_{p}+C_{p}+D_{p}
$$

and so

$$
(p-1)\left\|\Lambda_{p}\right\|=\left\|A(p)^{-1}\left(B_{p}+C_{p}+D_{p}\right)\right\| \leqslant\left\|A(p)^{-1}\right\|\left(\left\|B_{p}\right\|+\left\|C_{p}\right\|+\left\|D_{p}\right\|\right)
$$

Therefore,

$$
(p-1)\left\|\Lambda_{p}\right\|\left(1-\frac{\left\|A(p)^{-1}\right\|\left\|C_{p}\right\|}{(p-1)\left\|\Lambda_{p}\right\|}\right) \leqslant\left\|A(p)^{-1}\right\|\left\|B_{p}\right\|+\left\|A(p)^{-1}\right\|\left\|D_{p}\right\|
$$

Dividing the above inequality by a^{p} and taking limits as $p \rightarrow \infty$ we have $\limsup _{p \rightarrow \infty} p\left\|\Lambda_{p}\right\| / a^{p} \leqslant\left\|A^{-1}\right\| b$.

In similar way,

$$
\left\|B_{p}\right\| \leqslant(p-1)\|A(p)\|\left\|\Lambda_{p}\right\|\left(1+\frac{\left\|C_{p}\right\|}{(p-1)\|A(p)\|\left\|\Lambda_{p}\right\|}\right)+\left\|D_{p}\right\|
$$

and therefore $\liminf _{p \rightarrow \infty} p\left\|\Lambda_{p}\right\| / a^{p} \geqslant b /\|A\|$. From the above inequalities there exists $p_{2}>p_{1}$ such that, for $p>p_{2}$,

$$
\begin{equation*}
\frac{b}{\|A\|} \leqslant \frac{p\left\|\Lambda_{p}\right\|}{a^{p}} \leqslant b\left\|A^{-1}\right\| . \tag{27}
\end{equation*}
$$

Finally, taking into account (20) we conclude the proof.

References

[1] J. Descloux, Approximation in L_{p} and Chebychev approximation, J. Soc. Ind. Appl. Math. 11 (1963) 1017-1026.
[2] A. Egger, R. Huotari, Rate of convergence of the discrete Polya algorithm, J. Approx. Theory 60 (1990) 24-30.
[3] A. Egger, R. Huotari, Polya properties in sequence spaces, Approx. Theory Appl. 7 (3) (1991) 77-85.
[4] W. Li, Continuous Selections for Metric Projections and Interpolating Subspaces, Verlag Peter Lang, Frankfurt, 1991.
[5] W. Li, Convergence of Polya algorithm and continuous metric selections in space of continuous functions, J. Approx. Theory 80 (2) (1995) 164-179.
[6] M. Marano, Strict approximation on closed convex sets, Approx. Theory Appl. 6 (1990) 99-109.
[7] M. Marano, J. Navas, The linear discrete Pólya algorithm, Appl. Math. Lett. 8 (6) (1995) 25-28.
[8] J.M. Quesada, J. Navas, Rate of convergence of the linear discrete Polya algorithm, J. Approx. Theory 110 (2001) 109-119.
[9] J.R. Rice, The Approximation of Functions, Nonlinear and Multivariate Theory, vol. 2, Addison-Wesley Publishing Co., Reading, MA, 1969.
[10] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer, Berlin, 1970.
[11] M. Sommer, Continuous selections and convergence of best L_{p}-approximations in subspaces of spline functions, Numer. Funct. Anal. Optim. 6 (1983) 213-234.
[12] M. Sommer, L_{p}-approximation and Chebyshev approximations in subspaces of spline functions, in: Approximation and Optimization in Mathematical Physics vol. 27, Verlag Peter Lang, Frankfurt, 1983, pp. 105-139.
[13] V. Stover, The strict approximation and continuos selection for the metric projection, Ph.D. Dissertation, Department Mathematics, University of California, San Diego, 1981.

[^0]: * Corresponding author. Fax: 34953212141.

 E-mail addresses: jquesada@ujaen.es (J.M. Quesada), jmmoreno@ujaen.es (J. Martínez-Moreno), jbusta@fcm.uap.mx (J. Bustamante).
 ${ }^{1}$ Partially supported by Junta de Andalucía, Research Groups FQM268, FQM178 and by Ministerio de Ciencia y Tecnología, Project BFM2003-05794.

